Recent evidence suggests that some brain areas act as hubs interconnecting distinct, functionally specialized systems. These nexuses are intriguing because of their potential role in integration and also because they may augment metabolic cascades relevant to brain disease. To identify regions of high connectivity in the human cerebral cortex, we applied a computationally efficient approach to map the degree of intrinsic functional connectivity across the brain. Analysis of two separate functional magnetic resonance imaging datasets (each n ϭ 24) demonstrated hubs throughout heteromodal areas of association cortex. Prominent hubs were located within posterior cingulate, lateral temporal, lateral parietal, and medial/lateral prefrontal cortices. Network analysis revealed that many, but not all, hubs were located within regions previously implicated as components of the default network. A third dataset (n ϭ 12) demonstrated that the locations of hubs were present across passive and active task states, suggesting that they reflect a stable property of cortical network architecture. To obtain an accurate reference map, data were combined across 127 participants to yield a consensus estimate of cortical hubs. Using this consensus estimate, we explored whether the topography of hubs could explain the pattern of vulnerability in Alzheimer's disease (AD) because some models suggest that regions of high activity and metabolism accelerate pathology. Positron emission tomography amyloid imaging in AD (n ϭ 10) compared with older controls (n ϭ 29) showed high amyloid- deposition in the locations of cortical hubs consistent with the possibility that hubs, while acting as critical way stations for information processing, may also augment the underlying pathological cascade in AD.
Biomarkers have become an essential component of Alzheimer disease (AD) research and because of the pervasiveness of AD pathology in the elderly, the same biomarkers are used in cognitive aging research. A number of current issues suggest that an unbiased descriptive classification scheme for these biomarkers would be useful. We propose the “A/T/N” system in which 7 major AD biomarkers are divided into 3 binary categories based on the nature of the pathophysiology that each measures. “A” refers to the value of a β-amyloid biomarker (amyloid PET or CSF Aβ42); “T,” the value of a tau biomarker (CSF phospho tau, or tau PET); and “N,” biomarkers of neurodegeneration or neuronal injury ([18F]-fluorodeoxyglucose–PET, structural MRI, or CSF total tau). Each biomarker category is rated as positive or negative. An individual score might appear as A+/T+/N−, or A+/T−/N−, etc. The A/T/N system includes the new modality tau PET. It is agnostic to the temporal ordering of mechanisms underlying AD pathogenesis. It includes all individuals in any population regardless of the mix of biomarker findings and therefore is suited to population studies of cognitive aging. It does not specify disease labels and thus is not a diagnostic classification system. It is a descriptive system for categorizing multidomain biomarker findings at the individual person level in a format that is easy to understand and use. Given the present lack of consensus among AD specialists on terminology across the clinically normal to dementia spectrum, a biomarker classification scheme will have broadest acceptance if it is independent from any one clinically defined diagnostic scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.