Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, nineteen associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biologic pathways.
High blood pressure (BP) is more prevalent and contributes to more severe manifestations of cardiovascular disease (CVD) in African Americans than in any other United States ethnic group. Several small African-ancestry (AA) BP genome-wide association studies (GWASs) have been published, but their findings have failed to replicate to date. We report on a large AA BP GWAS meta-analysis that includes 29,378 individuals from 19 discovery cohorts and subsequent replication in additional samples of AA (n = 10,386), European ancestry (EA) (n = 69,395), and East Asian ancestry (n = 19,601). Five loci (EVX1-HOXA, ULK4, RSPO3, PLEKHG1, and SOX6) reached genome-wide significance (p < 1.0 × 10(-8)) for either systolic or diastolic BP in a transethnic meta-analysis after correction for multiple testing. Three of these BP loci (EVX1-HOXA, RSPO3, and PLEKHG1) lack previous associations with BP. We also identified one independent signal in a known BP locus (SOX6) and provide evidence for fine mapping in four additional validated BP loci. We also demonstrate that validated EA BP GWAS loci, considered jointly, show significant effects in AA samples. Consequently, these findings suggest that BP loci might have universal effects across studied populations, demonstrating that multiethnic samples are an essential component in identifying, fine mapping, and understanding their trait variability.
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15×10−94
Summary Introduction The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading approach to the identification of novel biological pathways for human disease. To date, GWAS have had been limited by relatively small sample sizes and yielded relatively few loci associated with ischemic stroke The National Institute of Neurological Disorders Stroke Genetics Network (NINDS-SiGN) is an international consortium that has taken a systematic approach to phenotyping and produced the largest ischemic stroke GWAS to date. Methods In order to identify genetic loci associated with ischemic stroke, we performed a two-stage genome-wide association study. The first stage consisted of 16,851 cases with state-of-the-art phenotyping and 32,473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtyped by centrally trained and certified investigators using the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identify samples genotyped on (nearly) identical arrays and of similar genetic ancestral background. Data was cleaned and imputed using dense imputation reference panels generated from whole-genome sequence data. Genome-wide testing was performed within each stratum for each available phenotype, and summary level results were combined using inverse variance-weighted fixed effects meta-analysis. The second stage consisted of in silico look-ups of 1,372 SNPs in 20,941 cases and 364,736 stroke-free controls, with cases previously subtyped using the TOAST classification system according to local standards. The two stages were then jointly analyzed in a final meta-analysis. Findings We identified a novel locus at 1p13.2 near TSPAN2 associated with large artery atherosclerosis (LAA)-related stroke (stage I OR for the G allele at rs12122341 = 1·21, p = 4.50 × 10−8; stage II OR = 1·19, p = 1·30 × 10−9). We also confirmed four loci robustly associated with ischemic stroke and reported in prior studies, including PITX2 and ZFHX3 for cardioembolic stroke, and HDAC9 for LAA stroke. The 12q24 locus near ALDH2, originally associated with all ischemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke. Other loci, including NINJ2, were not confirmed. Interpretation Our results identify a novel LAA-stroke susceptibility gene and now indicate that all loci implicated by GWAS to date are subtype specific. Follow-up studies will be necessary to determine whether the locus near TSPAN2 yields a novel therapeutic approach to stroke prevention. Given the subtype-specificity of these associations, the rich phenotyping available in SiGN is likely to prove vital for further genetic discovery in ischemic stroke. Funding National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH).
SummaryVariants in the engulfment and cell motility 1 (ELMO1) gene are associated with nephropathy due to type 2 diabetes mellitus (T2DM) in a Japanese cohort. We comprehensively evaluated this gene in African American (AA) T2DM patients with end-stage renal disease (ESRD). Three hundred and nine HapMap tagging SNPs and 9 reportedly associated SNPs were genotyped in 577 AA T2DM-ESRD patients and 596 AA non-diabetic controls, plus 43 non-diabetic European American controls and 45 Yoruba Nigerian samples for admixture adjustment. Replication analyses were conducted in 558 AA with T2DM-ESRD and 564 controls without diabetes. Extension analyses included 328 AA with T2DM lacking nephropathy and 326 with non-diabetic ESRD. The original and replication analyses confirmed association with four SNPs in intron 13 (permutation p-values for combined analyses = 0.001-0.003), one in intron 1 (P = 0.004) and one in intron 5 (P = 0.002) with T2DM-associated ESRD. In a subsequent combined analysis of all 1,135 T2DM-ESRD cases and 1,160 controls, an additional 7 intron 13 SNPs produced evidence of association (P = 3.5 × 10 −5 -P = 0.05). No associations were seen with these SNPs in those with T2DM lacking nephropathy or with ESRD due to non-diabetic causes. Variants in intron 13 of the ELMO1 gene appear to confer risk for diabetic nephropathy in AA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.