The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
The timely secretion of gonadal sex steroids is essential for the initiation of puberty, the postpubertal maintenance of secondary sexual characteristics and the normal perinatal development of male external genitalia. Normal gonadal steroid production requires the actions of the pituitary-derived gonadotropins, luteinizing hormone and follicle-stimulating hormone. We report four human pedigrees with severe congenital gonadotropin deficiency and pubertal failure in which all affected individuals are homozygous for loss-of-function mutations in TAC3 (encoding Neurokinin B) or its receptor TACR3 (encoding NK3R). Neurokinin B, a member of the substance P-related tachykinin family, is known to be highly expressed in hypothalamic neurons that also express kisspeptin, a recently identified regulator of gonadotropin-releasing hormone secretion. These findings implicate Neurokinin B as a critical central regulator of human gonadal function and suggest new approaches to the pharmacological control of human reproduction and sex hormone-related diseases.
X-linked retinitis pigmentosa (xlRP) is a severe progressive retinal degeneration which affects about 1 in 25,000 of the population. The most common form of xlRP, RP3, has been localised to the interval between CYBB and OTC in Xp21.1 by linkage analysis and deletion mapping. Identification of microdeletions within this region has now led to the positional cloning of a gene, RPGR, that spans 60 kg of genomic DNA and is ubiquitously expressed. The predicted 90 kD protein contains in its N-terminal half a tandem repeat structure highly similar to RCC1 (regulator of chromosome condensation), suggesting an interaction with a small GTPase. The C-terminal half contains a domain, rich in acidic residues, and ends in a potential isoprenylation anchorage site. The two intragenic deletions, two nonsense and three missense mutations within conserved domains provide evidence that RPGR (retinitis pigmentosa GTPase regulator) is the RP3 gene.
Recently, the application of array-based comparative genomic hybridization (array CGH) has improved rates of detection of chromosomal imbalances in individuals with mental retardation and dysmorphic features. Here, we describe three individuals with learning disability and a heterozygous deletion at chromosome 17q21.3, detected in each case by array CGH. FISH analysis demonstrated that the deletions occurred as de novo events in each individual and were between 500 kb and 650 kb in size. A recently described 900-kb inversion that suppresses recombination between ancestral H1 and H2 haplotypes encompasses the deletion. We show that, in each trio, the parent of origin of the deleted chromosome 17 carries at least one H2 chromosome. This region of 17q21.3 shows complex genomic architecture with well-described low-copy repeats (LCRs). The orientation of LCRs flanking the deleted segment in inversion heterozygotes is likely to facilitate the generation of this microdeletion by means of non-allelic homologous recombination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.