Liver repair after acute liver injury is characterized by hepatocyte proliferation, removal of necrotic tissue, and restoration of hepatocellular and hepatic microvascular architecture. Macrophage recruitment is essential for liver tissue repair and recovery from injury; however, the underlying mechanisms are unclear. Signaling through vascular endothelial growth factor receptor 1 (VEGFR1) is suggested to play a role in macrophage migration and angiogenesis. The aim of the present study was to examine the role of VEGFR1 in liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion (I/R). VEGFR1 tyrosine kinase knockout mice (VEGFR1 TK-/- mice) and wild-type (WT) mice were subjected to hepatic warm I/R, and the processes of liver repair and sinusoidal reconstruction were examined. Compared with WT mice, VEGFR1 TK-/- mice exhibited delayed liver repair after hepatic I/R. VEGFR1-expressing macrophages recruited to the injured liver showed reduced expression of epidermal growth factor (EGF). VEGFR1 TK-/- mice also showed evidence of sustained sinusoidal functional and structural damage, and reduced expression of pro-angiogenic factors. Treatment of VEGFR1 TK-/- mice with EGF attenuated hepatoceullar and sinusoidal injury during hepatic I/R. VEGFR1 TK-/- bone marrow (BM) chimeric mice showed impaired liver repair and sinusoidal reconstruction, and reduced recruitment of VEGFR1-expressing macrophages to the injured liver. VEGFR1-macrophages recruited to the liver during hepatic I/R contribute to liver repair and sinusoidal reconstruction. VEGFR1 activation is a potential therapeutic strategy for promoting liver repair and sinusoidal restoration after acute liver injury.
Using pharmacological unmasking microarray, we identified promoter DNA methylation of cysteine dioxygenase 1 (CDO1) gene in human cancer. In this study, we assessed the clinicopathological significance of CDO1 methylation in primary breast cancer (BC) with no prior chemotherapy. The CDO1 DNA methylation was quantified by TaqMan methylation specific PCR (Q-MSP) in 7 BC cell lines and 172 primary BC patients with no prior chemotherapy. Promoter DNA of the CDO1 gene was hypermethylated in 6 BC cell lines except SK-BR3, and CDO1 gene expression was all silenced at mRNA level in the 7 BC cell lines. Quantification of CDO1 methylation was developed using Q-MSP, and assessed in primary BC. Among the clinicopathologic factors, CDO1 methylation level was not statistically significantly associated with any prognostic factors. The log-rank plot analysis elucidated that the higher methylation the tumors harbored, the poorer prognosis the patients exhibited. Using the median value of 58.0 as a cut-off one, disease specific survival in BC patients with CDO1 hypermethylation showed significantly poorer prognosis than those with hypomethylation (p = 0.004). Multivariate Cox proportional hazards model identified that CDO1 hypermethylation was prognostic factor as well as Ki-67 and hormone receptor status. The most intriguingly, CDO1 hypermethylation was of robust prognostic relevance in triple negative BC (p = 0.007). Promoter DNA methylation of CDO1 gene was robust prognostic indicator in primary BC patients with no prior chemotherapy. Prognostic relevance of the CDO1 promoter DNA methylation is worthy of being paid attention in triple negative BC cancer.
The persistence of proinflammatory macrophages, which are recruited to the granulation tissue, impairs the healing of diabetic wounds. Herein, we examined the role of vascular endothelial growth factor receptor type 1 (VEGFR1) signaling in streptozotocin (STZ)-induced diabetic wound healing. Angiogenesis, lymphangiogenesis, and the healing of full-thickness skin wounds were impaired in STZ-treated wild-type (WT) mice compared with vehicle-treated WT mice, with attenuated recruitment of VEGFR1-positive macrophages expressing vascular endothelial growth factor (VEGF)-A, VEGF-C, and VEGF-D to the wound granulation tissue. These phenomena were even more prevalent in STZ-treated VEGFR1 tyrosine kinase knockout mice (VEGFR1 TK(-/-) mice). STZ-treated WT mice, but not STZ-treated VEGFR1 TK(-/-) mice, showed accelerated wound healing when treated with placenta growth factor. Compared with that of STZ-treated WT mice, the wound granulation tissue of STZ-treated VEGFR1 TK(-/-) mice contained more VEGFR1-positive cells expressing IL-1β [a classic (M1) activated macrophage marker] and fewer VEGFR1-positive cells expressing the mannose receptor [CD206; an alternatively activated (M2) macrophage marker]. Treatment of STZ-treated VEGFR1 TK(-/-) mice with an IL-1β-neutralizing antibody restored impaired wound healing and angiogenesis/lymphangiogenesis and induced macrophages in the wound granulation tissue to switch to an M2 phenotype. Taken together, these results suggest that VEGFR1 signaling plays a role in regulating the balance between macrophage phenotypes in STZ-induced diabetic wounds, prevents impaired diabetic wound healing, and promotes angiogenesis/lymphangiogenesis.
We have demonstrated that CDO1 methylation is frequently found in various cancers, including esophageal squamous cell carcinoma (ESCC), but its clinical relevance has remained elusive. CDO1 methylation was investigated in 169 ESCC patients who underwent esophagectomy between 1996 and 2007. CDO1 methylation was assessed by Q-MSP (quantitative methylation specific PCR), and its clinical significance, including its relationship to prognosis, was analyzed. (i) The median TaqMeth value of CDO1 methylation was 9.4, ranging from 0 to 279.5. CDO1 methylation was significantly different between cStage I and cStage II/III (P = 0.02). (ii) On the log-rank plot, the optimal cut-off value was determined to be 8.9; ESCC patients with high CDO1 methylation showed a significantly worse prognosis than those with low CDO1 methylation (P = 0.02). (iii) A multivariate Cox proportional hazards model identified only CDO1 hypermethylation as an independent prognostic factor (HR 2.00, CI 1.09-3.78, P = 0.03). (iv) CDO1 hypermethylation stratified ESCC patients' prognosis in cStage II/III for both neoadjuvant chemo(radio)therapy (NAC)-positive and NAC-negative cases. Moreover, the CDO1 methylation level was significantly lower in cases with Grade 2/3 than in those with Grade 0/1 (P = 0.02) among cStage II/III ESCC patients with NAC. Promoter DNA hypermethylation of CDO1 could be an independent prognostic factor in ESCC; it may also reflect NAC eradication of tumor cells in the primary tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.