Spontaneous tumor-initiated T cell priming is dependent on IFN-β production by tumor-resident dendritic cells. Based on recent observations indicating that IFN-β expression was dependent upon activation of the host STING pathway, we hypothesized that direct engagement of STING through intratumoral administration of specific agonists would result in effective antitumor therapy. After proof-of-principle studies using the mouse STING agonist DMXAA showed a potent therapeutic effect, we generated synthetic cyclic dinucleotide (CDN) derivatives that activated all human STING alleles as well as murine STING. Intratumoral injection of STING agonists induced profound regression of established tumors in mice and generated substantial systemic immune responses capable of rejecting distant metastases and providing long-lived immunologic memory. Synthetic CDNs have high translational potential as a cancer therapeutic.
Intratumoral (IT) STING activation results in tumor regression in preclinical models, yet factors dictating the balance between innate and adaptive anti-tumor immunity are unclear. Here, clinical candidate STING agonist ADU-S100 (S100) is used in an IT dosing regimen optimized for adaptive immunity to uncover requirements for a T cell-driven response compatible with checkpoint inhibitors (CPIs). In contrast to highdose tumor ablative regimens that result in systemic S100 distribution, low-dose immunogenic regimens induce local activation of tumor-specific CD8 + effector T cells that are responsible for durable anti-tumor immunity and can be enhanced with CPIs. Both hematopoietic cell STING expression and signaling through IFNAR are required for tumor-specific T cell activation, and in the context of optimized T cell responses, TNFa is dispensable for tumor control. In a poorly immunogenic model, S100 combined with CPIs generates a survival benefit and durable protection. These results provide fundamental mechanistic insights into STING-induced anti-tumor immunity.
SUMMARY
There are a limited number of adjuvants that elicit effective cell-based immunity required for protection against intracellular bacterial pathogens. Here, we report that STING-activating cyclic dinucleotides (CDNs) formulated in a protein subunit vaccine elicit long-lasting protective immunity to Mycobacterium tuberculosis in the mouse model. Subcutaneous administration of this vaccine provides equivalent protection to that of the live attenuated vaccine strain Bacille Calmette-Guérin (BCG). Protection is STING dependent but type I IFN independent and correlates with an increased frequency of a recently described subset of CXCR3-expressing T cells that localize to the lung parenchyma. Intranasal delivery results in superior protection compared with BCG, significantly boosts BCG-based immunity, and elicits both Th1 and Th17 immune responses, the latter of which correlates with enhanced protection. Thus, a CDN-adjuvanted protein subunit vaccine has the capability of eliciting a multi-faceted immune response that results in protection from infection by an intracellular pathogen.
In the originally published version of this article, the 4T1 tumor cell line described in Figures 1, 2, and 5 and Supplemental Figures S1, S2, and S5 was mis-identified. This cell line has since been identified via short tandem repeat analysis as the murine CT26 tumor cell line, which is an undifferentiated colon carcinoma cell line. Furthermore, the line that was used had been engineered to express the human mesothelin protein. The authors believe that the substance and interpretation of the experiments put forth in the article remain the same. The online article, Figures 2 and S1, and the Supplemental Information have been updated to reflect the correction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.