Germ cell specification is accompanied by epigenetic remodeling, the scale and specificity of which are unclear. Here, we quantitatively delineate chromatin dynamics during induction of mouse embryonic stem cells (ESCs) to epiblast-like cells (EpiLCs) and from there into primordial germ cell-like cells (PGCLCs), revealing large-scale reorganization of chromatin signatures including H3K27me3 and H3K9me2 patterns. EpiLCs contain abundant bivalent gene promoters characterized by low H3K27me3, indicating a state primed for differentiation. PGCLCs initially lose H3K4me3 from many bivalent genes but subsequently regain this mark with concomitant upregulation of H3K27me3, particularly at developmental regulatory genes. PGCLCs progressively lose H3K9me2, including at lamina-associated perinuclear heterochromatin, resulting in changes in nuclear architecture. T recruits H3K27ac to activate BLIMP1 and early mesodermal programs during PGCLC specification, which is followed by BLIMP1-mediated repression of a broad range of targets, possibly through recruitment and spreading of H3K27me3. These findings provide a foundation for reconstructing regulatory networks of the germline epigenome.
One of the most critical issues in prostate cancer clinic is emerging hormone-refractory prostate cancers (HRPCs) and their management. Prostate cancer is usually androgen dependent and responds well to androgen ablation therapy. However, at a certain stage, they eventually acquire androgenindependent and more aggressive phenotype and show poor response to any anticancer therapies. To characterize the molecular features of clinical HRPCs, we analyzed gene expression profiles of 25 clinical HRPCs and 10 hormonesensitive prostate cancers (HSPCs) by genome-wide cDNA microarrays combining with laser microbeam microdissection. An unsupervised hierarchical clustering analysis clearly distinguished expression patterns of HRPC cells from those of HSPC cells. In addition, primary and metastatic HRPCs from three patients were closely clustered regardless of metastatic organs. A supervised analysis and permutation test identified 36 up-regulated genes and 70 down-regulated genes in HRPCs compared with HSPCs (average fold difference > 1.5; P < 0.0001). We observed overexpression of AR, ANLN, and SNRPE and down-regulation of NR4A1, CYP27A1, and HLA-A antigen in HRPC progression. AR overexpression is likely to play a central role of hormone-refractory phenotype, and other genes we identified were considered to be related to more aggressive phenotype of clinical HRPCs, and in fact, knockdown of these overexpressing genes by small interfering RNA resulted in drastic attenuation of prostate cancer cell viability. Our microarray analysis of HRPC cells should provide useful information to understand the molecular mechanism of HRPC progression and to identify molecular targets for development of HRPC treatment. [Cancer Res 2007;67(11):5117-25]
Purpose: Neoadjuvant chemotherapy for invasive bladder cancer, involving a regimen of methotrexate, vinblastine, doxorubicin, and cisplatin (M-VAC), can improve the resectability of larger neoplasms for some patients and offer a better prognosis. However, some suffer severe adverse drug reactions without any effect, and no method yet exists for predicting the response of an individual patient to chemotherapy. Our purpose in this study is to establish a method for predicting response to the M-VAC therapy.
Experimental Design: We analyzed gene expression profiles of biopsy materials from 27 invasive bladder cancers using a cDNA microarray consisting of 27,648 genes, after populations of cancer cells had been purified by laser microbeam microdissection.
Results: We identified dozens of genes that were expressed differently between nine “responder” and nine “nonresponder” tumors; from that list we selected the 14 “predictive” genes that showed the most significant differences and devised a numerical prediction scoring system that clearly separated the responder group from the nonresponder group. This system accurately predicted the drug responses of 8 of 9 test cases that were reserved from the original 27 cases. Because real-time reverse transcription–PCR data were highly concordant with the cDNA microarray data for those 14 genes, we developed a quantitative reverse transcription–PCR–based prediction system that could be feasible for routine clinical use.
Conclusions: Our results suggest that the sensitivity of an invasive bladder cancer to the M-VAC neoadjuvant chemotherapy can be predicted by expression patterns in this set of genes, a step toward achievement of “personalized therapy” for treatment of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.