ABSTRACT1. The European Water Framework Directive requires the determination of ecological status in European fresh and saline waters. This is to be through the establishment of a typology of surface water bodies, the determination of reference (high status) conditions in each element (ecotype) of the typology and of lower grades of status (good, moderate, poor and bad) for each ecotype. It then requires classification of the status of the water bodies and their restoration to at least 'good status' in a specified period.2. Though there are many methods for assessing water quality, none has the scope of that defined in the Directive. The provisions of the Directive require a wide range of variables to be measured and give only general guidance as to how systems of classification should be established. This raises issues of comparability across States and of the costs of making the determinations.3. Using expert workshops and subsequent field testing, a practicable pan-European typology and classification system has been developed for shallow lakes, which can easily be extended to all lakes. It is parsimonious in its choice of determinands, but based on current limnological understanding and therefore as cost-effective as possible.4. A core typology is described, which can be expanded easily in particular States to meet local conditions. The core includes 48 ecotypes across the entire European climate gradient and incorporates climate, lake area, geology of the catchment and conductivity.5. The classification system is founded on a liberal interpretation of Annexes in the Directive and uses variables that are inexpensive to measure and ecologically relevant. The need for taxonomic expertise is minimized.6. The scheme has been through eight iterations, two of which were tested in the field on tranches of 66 lakes. The final version, Version 8, is offered for operational testing and further refinement by statutory authorities.
The compositional heterogeneity of biotic assemblages among sites, or beta-diversity, regulates the relationship between local and regional species diversity across scales. Recent work has suggested that increased harshness of environmental conditions tends to reduce beta-diversity by decreasing the importance of stochastic processes in structuring assemblages. We investigated the effect of nutrient enrichment on the compositional heterogeneity of lake benthic invertebrate assemblages in Ireland at both local (within-lake) and regional (among-lake) scales. At local scales, we found that the compositional heterogeneity of benthic assemblages was related inversely to the extent of nutrient enrichment (as indicated by measurements of water column total phosphorus, total nitrogen, and chlorophyll a), after effects of lake morphology (i.e., surface area, connectivity, and depth of sampling) and alkalinity were accounted for. At regional scales, we found that nutrient-rich lakes had significantly more homogenous benthic assemblages than nutrient-poor lakes, over and above the effect of alkalinity and across a similar range of lake morphologies. These findings have profound implications for global aquatic biodiversity, as the homogenization of benthic assemblages at both local and regional scales may have important and unpredictable effects on whole aquatic ecosystems, with potentially considerable ecological and evolutionary consequences.
Global pressures on freshwater ecosystems are high and rising. Viewed primarily as a resource for humans, current practices of water use have led to catastrophic declines in freshwater species and the degradation of freshwater ecosystems, including their genetic and functional diversity. Approximately three‐quarters of the world's inland wetlands have been lost, one‐third of the 28 000 freshwater species assessed for the International Union for Conservation of Nature (IUCN) Red List are threatened with extinction, and freshwater vertebrate populations are undergoing declines that are more rapid than those of terrestrial and marine species. This global loss continues unchecked, despite the importance of freshwater ecosystems as a source of clean water, food, livelihoods, recreation, and inspiration. The causes of these declines include hydrological alterations, habitat degradation and loss, overexploitation, invasive species, pollution, and the multiple impacts of climate change. Although there are policy initiatives that aim to protect freshwater life, these are rarely implemented with sufficient conviction and enforcement. Policies that focus on the development and management of fresh waters as a resource for people almost universally neglect the biodiversity that they contain. Here we introduce the Alliance for Freshwater Life, a global initiative, uniting specialists in research, data synthesis, conservation, education and outreach, and policymaking. This expert network aims to provide the critical mass required for the effective representation of freshwater biodiversity at policy meetings, to develop solutions balancing the needs of development and conservation, and to better convey the important role freshwater ecosystems play in human well‐being. Through this united effort we hope to reverse this tide of loss and decline in freshwater biodiversity. We introduce several short‐ and medium‐term actions as examples for making positive change, and invite individuals, organizations, authorities, and governments to join the Alliance for Freshwater Life.
We analyzed data from 81 shallow European lakes, which were sampled with standardized methods, for combined effects of climatic, physical, and chemical features of food‐web interactions, with a specific focus on zooplankton biomass and community structure. multiple‐regression analysis showed that total phosphorus (TP) generally was the most important predictor of zooplankton biomass and community structure. Climate was the next most important predictor and acted mainly through its effect on pelagic zooplankton taxa. Benthic and plant‐associated taxa (typically almost half the total zooplankton biomass) were, however, affected mainly by macrophyte coverage. Neither climate nor TP affected the relation between small and large taxa, and we found only a weak trend with increasing TP of increasing mean crustacean body mass. Dividing the data set into three climate zones revealed a pronounced difference in response to lake productivity between cold lakes, with long periods of ice cover, and the two warmer lake types. These ÂÂice lakes differed from the others with respect to the effect of TP on chlorophyll a, the zooplankton : chlorophyll a ratio, the chlorophyll a :TP ratio, and the proportion of cyclopoids in the copepod community. Our data suggest that bottom‐up forces, such as nutrient concentration, are the most important predictors of zooplankton biomass. In addition, climate contributes significantly—possibly by affecting top‐down regulation by fish—and may interact with productivity in determining the zooplankton standing biomass and community composition. Hence, the present study suggests that food‐web dynamics are closely linked to climatic features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.