We assessed the effects of 78 potential chemopreventive agents in the F344 rat using two assays in which the inhibition of carcinogen-induced aberrant crypt foci (ACF) in the colon was the measure of efficacy. In both assays ACF were induced by the carcinogen azoxymethane (AOM) in F344 rats by two sequential weekly injections at a dose of 15 mg/kg. Two weeks after the last AOM injection, animals were evaluated for the number of aberrant crypts detected in methylene blue stained whole mounts of rat colon. In the initiation phase protocol agents were given during the period of AOM administration, whereas in the post-initiation assay the chemopreventive agent was introduced during the last 4 weeks of an 8 week assay, a time when ACF had progressed to multiple crypt clusters. The agents were derived from a priority listing based on reports of chemopreventive activity in the literature and/or efficacy data from in vitro models of carcinogenesis. During the initiation phase carboxyl amidoimidazole, p-chlorphenylacetate, chlorpheniramine maleate, D609, diclofenac, etoperidone, eicosatetraynoic acid, farnesol, ferulic acid, lycopene, meclizine, methionine, phenylhexylisothiocyanate, phenylbutyrate, piroxicam, 9-cis-retinoic acid, S-allylcysteine, taurine, tetracycline and verapamil were strong inhibitors of ACF. During the post-initiation phase aspirin, calcium glucarate, ketoprofen, piroxicam, 9-cis-retinoic acid, retinol and rutin inhibited the outgrowth of ACF into multiple crypt clusters. Based on these data, certain phytochemicals, antihistamines, non-steroidal anti-inflammatory drugs and retinoids show unique preclinical promise for chemoprevention of colon cancer, with the latter two drug classes particularly effective in the post-initiation phase of carcinogenesis.
We assessed the effects of 78 potential chemopreventive agents in the F344 rat using two assays in which the inhibition of carcinogen-induced aberrant crypt foci (ACF) in the colon was the measure of efficacy. In both assays ACF were induced by the carcinogen azoxymethane (AOM) in F344 rats by two sequential weekly injections at a dose of 15 mg/kg. Two weeks after the last AOM injection, animals were evaluated for the number of aberrant crypts detected in methylene blue stained whole mounts of rat colon. In the initiation phase protocol agents were given during the period of AOM administration, whereas in the post-initiation assay the chemopreventive agent was introduced during the last 4 weeks of an 8 week assay, a time when ACF had progressed to multiple crypt clusters. The agents were derived from a priority listing based on reports of chemopreventive activity in the literature and/or efficacy data from in vitro models of carcinogenesis. During the initiation phase carboxyl amidoimidazole, p-chlorphenylacetate, chlorpheniramine maleate, D609, diclofenac, etoperidone, eicosatetraynoic acid, farnesol, ferulic acid, lycopene, meclizine, methionine, phenylhexylisothiocyanate, phenylbutyrate, piroxicam, 9-cis-retinoic acid, S-allylcysteine, taurine, tetracycline and verapamil were strong inhibitors of ACF. During the post-initiation phase aspirin, calcium glucarate, ketoprofen, piroxicam, 9-cis-retinoic acid, retinol and rutin inhibited the outgrowth of ACF into multiple crypt clusters. Based on these data, certain phytochemicals, antihistamines, non-steroidal anti-inflammatory drugs and retinoids show unique preclinical promise for chemoprevention of colon cancer, with the latter two drug classes particularly effective in the post-initiation phase of carcinogenesis.
Abstract. Five soft tissue tumors of varied morphology in dogs and cats were classified as malignant fibrous histiocytomas on the basis of their histologic composition. All were composed of varying mixtures of histiocytes and fibroblasts and three contained large multinucleated cells. This giant cell variant of malignant fibrous histiocytoma was seen only in cats. These tumors are comparable to those described in man as malignant fibrous histiocytoma on the basis of the malignant histiocyte and its varied morphology and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.