Although amyloid  (A) oligomers are presumed to cause synaptic and cognitive dysfunction in Alzheimer's disease (AD), their contribution to other pathological features of AD remains unclear. To address the latter, we generated APP transgenic mice expressing the E693⌬ mutation, which causes AD by enhanced A oligomerization without fibrillization. The mice displayed age-dependent accumulation of intraneuronal A oligomers from 8 months but no extracellular amyloid deposits even at 24 months. Hippocampal synaptic plasticity and memory were impaired at 8 months, at which time the presynaptic marker synaptophysin began to decrease. Furthermore, we detected abnormal tau phosphorylation from 8 months, microglial activation from 12 months, astrocyte activation from 18 months, and neuronal loss at 24 months. These findings suggest that A oligomers cause not only synaptic alteration but also other features of AD pathology and that these mice are a useful model of A oligomer-induced pathology in the absence of amyloid plaques.
Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Using Sanger and exome sequencing in a CMS patient, we identified two heteroallelic mutations, p.Glu1233Lys and p.Arg1277His, in LRP4 coding for the postsynaptic low-density lipoprotein receptor-related protein 4. LRP4, expressed on the surface of the postsynaptic membrane of the neuromuscular junction, is a receptor for neurally secreted agrin, and LRP4 bound by agrin activates MuSK. Activated MuSK in concert with Dok-7 stimulates rapsyn to concentrate and anchor AChR on the postsynaptic membrane and interacts with other proteins implicated in the assembly and maintenance of the neuromuscular junction. LRP4 also functions as an inhibitor of Wnt/beta-catenin signaling. The identified mutations in LRP4 are located at the edge of its 3rd beta-propeller domain and decrease binding affinity of LRP4 for both MuSK and agrin. Mutations in the LRP4 3rd beta-propeller domain were previously reported to impair Wnt signaling and cause bone diseases including Cenani -Lenz syndactyly syndrome and sclerosteosis-2. By analyzing naturally occurring and artificially introduced mutations in the LRP4 3rd beta-propeller domain, we show that the edge of the domain regulates the MuSK signaling whereas its central cavity governs Wnt signaling. We conclude that LRP4 is a new CMS disease gene and that the 3rd beta propeller domain of LRP4 mediates the two signaling pathways in a position-specific manner.
CAM includes clinicohistopathologically heterogeneous disease entities. Among CAM entities, anti-TIF1-γ-Ab(+) CAM has characteristically shown a close temporal association with cancer detection and the histopathologic findings of dC5b-9 and VFs, and CAM with NAM is a subset of anti-TIF1-γ-Ab(-) CAM.
The E693Delta mutation within the amyloid precursor protein (APP) has been suggested to cause dementia via the enhanced formation of synaptotoxic amyloid beta (Abeta) oligomers. However, this mutation markedly decreases Abeta secretion, implying the existence of an additional mechanism of neuronal dysfunction that is independent of extracellular Abeta. We therefore examined the effects of this mutation on both APP processing to produce Abeta as well as subcellular localization and accumulation of Abeta in transfected HEK293 and COS-7 cells. Both beta- and gamma-cleavage of mutant APP increased, indicating a lack of inhibition in Abeta production. Instead, this mutation promoted Abeta accumulation within cells, including the endoplasmic reticulum (ER), Golgi apparatus, early and late endosomes, lysosomes, and autophagosomes, all of which have been proposed as intracellular sites of Abeta generation and/or degradation, suggesting impairment of APP/Abeta trafficking. Notably, the intracellular mutant Abeta was found to predominantly form oligomers. Concomitant with this accumulation, the ER stress markers Grp78 and phosphorylated eIF2alpha were both strongly induced. Furthermore, the activation of caspase-4 and -3 as well as DNA fragmentation were detected in these cells. These results suggest that mutant Abeta induces alteration of Abeta trafficking and subsequent ER stress-induced apoptosis via enhancement of its intracellular oligomerization. Our findings suggest that Abeta oligomers exhibit toxicity in the extracellular space and within the cells themselves.
ObjectivesThe prevalence of chronic low back pain (CLBP) increases with age and several mechanisms are involved in the development of CLBP, including osteoporosis; however, no associations with sarcopenia have yet been identified.MethodsIn total, 100 patients with CLBP and 560 patients without CLBP (nCLBP) aged over 65 years were studied. Skeletal muscle mass index (SMI) and percentage of body fat were evaluated using whole-body dual-energy X-ray absorptiometry. Sarcopenia was diagnosed when the relative SMI was more than 2 standard deviations below the mean in young adults. Thus, the cutoff value for sarcopenia was defined according to Sanada's Japanese population data. Paraspinal muscle cross-sectional areas of the lumbar multifidus and the erector spinae muscles were calculated using magnetic resonance imaging.ResultsForty patients (40.0%) from the CLBP group and 149 (26.6%) from the nCLBP group met the criteria of sarcopenia. SMI was significantly lower and the body fat ratio was significantly higher in the CLBP group compared with the nCLBP group. Sarcopenic obesity was significantly observed in the CLBP group. Lumbar multifidus and the erector spinae muscle cross sectional area were significantly lower in the CLBP group.ConclusionsElderly patients with CLBP have significantly lower skeletal muscle mass, and age-related mechanisms in sarcopenia are considered to be associated with chronic pain. Therapeutic procedures that are used to treat elderly aging muscle, including muscle strengthening and performance training, can possibly be a treatment for or used to prevent elderly CLBP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.