Major depressive disorder (MDD), one of the most frequently encountered forms of mental illness and a leading cause of disability worldwide1, poses a major challenge to genetic analysis. To date no robustly replicated genetic loci have been identified 2, despite analysis of more than 9,000 cases3. Using low coverage genome sequence of 5,303 Chinese women with recurrent MDD selected to reduce phenotypic heterogeneity, and 5,337 controls screened to exclude MDD, we identified and replicated two genome-wide significant loci contributing to risk of MDD on chromosome 10: one near the SIRT1 gene (P-value = 2.53×10−10) the other in an intron of the LHPP gene (P = 6.45×10−12). Analysis of 4,509 cases with a severe subtype of MDD, melancholia, yielded an increased genetic signal at the SIRT1 locus. We attribute our success to the recruitment of relatively homogeneous cases with severe illness.
Major depressive disorder (MDD) is common and disabling, but its neuropathophysiology remains unclear. Most studies of functional brain networks in MDD have had limited statistical power and data analysis approaches have varied widely. The REST-meta-MDD Project of resting-state fMRI (R-fMRI) addresses these issues. Twenty-five research groups in China established the REST-meta-MDD Consortium by contributing R-fMRI data from 1,300 patients with MDD and 1,128 normal controls (NCs). Data were preprocessed locally with a standardized protocol before aggregated group analyses. We focused on functional connectivity (FC) within the default mode network (DMN), frequently reported to be increased in MDD. Instead, we found decreased DMN FC when we compared 848 patients with MDD to 794 NCs from 17 sites after data exclusion. We found FC reduction only in recurrent MDD, not in first-episode drug-naïve MDD. Decreased DMN FC was associated with medication usage but not with MDD duration. DMN FC was also positively related to symptom severity but only in recurrent MDD. Exploratory analyses also revealed alterations in FC of visual, sensory-motor, and dorsal attention networks in MDD. We confirmed the key role of DMN in MDD but found reduced rather than increased FC within the DMN. Future studies should test whether decreased DMN FC mediates response to treatment. All R-fMRI indices of data contributed by the REST-meta-MDD consortium are being shared publicly via the R-fMRI Maps Project.
SummaryAdversity, particularly in early life, can cause illness. Clues to the responsible mechanisms may lie with the discovery of molecular signatures of stress, some of which include alterations to an individual’s somatic genome. Here, using genome sequences from 11,670 women, we observed a highly significant association between a stress-related disease, major depression, and the amount of mtDNA (p = 9.00 × 10−42, odds ratio 1.33 [95% confidence interval [CI] = 1.29–1.37]) and telomere length (p = 2.84 × 10−14, odds ratio 0.85 [95% CI = 0.81–0.89]). While both telomere length and mtDNA amount were associated with adverse life events, conditional regression analyses showed the molecular changes were contingent on the depressed state. We tested this hypothesis with experiments in mice, demonstrating that stress causes both molecular changes, which are partly reversible and can be elicited by the administration of corticosterone. Together, these results demonstrate that changes in the amount of mtDNA and telomere length are consequences of stress and entering a depressed state. These findings identify increased amounts of mtDNA as a molecular marker of MD and have important implications for understanding how stress causes the disease.
XPA, a DNA binding protein in the nucleotide excision repair (NER) pathway, modulates damage recognition. Recently, a common single-nucleotide polymorphism (A --> G) of unknown function was identified in the 5' non-coding region of the XPA gene. Because a deficiency in NER is associated with an increased risk of lung cancer, we evaluated the role of this polymorphism in 695 lung cancer case patients and 695 age-, sex-, ethnicity- and smoking-matched control subjects. We also studied the effect of this polymorphism on NER capacity in a subset sample for whom the host cell reactivation data were available. The presence of one or two copies of the G allele was associated with a reduced lung cancer risk for Caucasians [adjusted odds ratio (ORadj) = 0.69 [95% confidence interval (CI) = 0.53-0.90]], Mexican-Americans [ORadj = 0.32 (95% CI = 0.12-0.83)] and African-Americans [ORadj = 0.45 (95% CI = 0.16-1.22)]. In Caucasians, ever smokers with one or more copies of the G allele were observed to have a significantly reduced risk of lung cancer. Control subjects with one or two copies of the G allele demonstrated more efficient DRC than did those with the homozygous A allele. Our data suggest that the XPA 5' non-coding region polymorphism modulates NER capacity and is associated with decreased lung cancer risk, especially in the presence of exposure to tobacco carcinogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.