European temperate forests (such as to tropical forests or to plant species other than trees). Moreover, if seed-dispersing animals are as crucial to the persistence of plants as this and other studies suggest (28, 29), then the combination of habitat loss with direct and indirect removal of animals, to which many of the world's most diverse forests are subject, is likely to have more drastic effects than either perturbation alone. In these circumstances, animaldispersed species might be more, not less, sensitive to habitat loss. This points to the maintenance of the network of plant-animal interactions as a cornerstone of conservation policy and to the need for more studies of species responses to habitat loss. Differentiation and secondary metabolism are correlated processes in fungi that respond to light. In Aspergillus nidulans, light inhibits sexual reproduction as well as secondary metabolism. We identified the heterotrimeric velvet complex VelB/VeA/LaeA connecting light-responding developmental regulation and control of secondary metabolism. VeA, which is primarily expressed in the dark, physically interacts with VelB, which is expressed during sexual development. VeA bridges VelB to the nuclear master regulator of secondary metabolism, LaeA. Deletion of either velB or veA results in defects in both sexual fruiting-body formation and the production of secondary metabolites.
Fruit body formation in filamentous fungi is a complex and yet hardly understood process. We show here that protein turnover control is crucial for Aspergillus nidulans development. Deletion of genes encoding COP9 signalosome (CSN) subunits 1, 2, 4, or 5 resulted in identical blocks in fruit body formation. The CSN multiprotein complex controls ubiquitin-dependent protein degradation in eukaryotes. Six CSN subunits interacted in a yeast two-hybrid analysis, and the complete eight-subunit CSN was recruited by a functional tandem affinity purification tag fusion of subunit 5 (CsnE). The tagged CsnE was unable to recruit any CSN subunit in a strain deleted for subunit 1 or subunit 4. Mutations in the JAMM metalloprotease core of CsnE resulted in mutant phenotypes identical to those of csn deletion strains. We propose that a correctly assembled CSN including a functional JAMM links protein turnover to fungal sexual development.development ͉ filamentous fungi F ungal fruit bodies are sexual reproduction structures that generate meiotic spores. The model mold Aspergillus nidulans develops a closed spherical fruit body (cleistothecium) including different tissue types: Hülle cells surround and nurse the growing cleistothecium, pericarp cells develop the protecting wall, and inner ascogenous cells mature into sexual spores (1, 2). Massive reconstruction of vegetative hyphae is required to build the complex three-dimensional fruit body. The regulation of this development is hardly understood in any fungus (3). A genetic screen recently identified csnD and csnE resembling genes for subunits of the COP9 signalosome (CSN) of animals and plants to be essential for fruit body formation of A. nidulans (4).CSN is a multiprotein complex composed of proteins containing PCI and MPN interaction domains (5, 6). Csn5/Jab1 is the only subunit conserved in all eukaryotes, and it carries an MPNϩ domain containing the JAMM motif conferring metalloprotease (deneddylation) activity (6, 7). CSN controls by its MPNϩ domain the activity of cullin-RING E3 ligases by cleaving the ubiquitin-like protein Nedd8/Rub1 from the cullin (8, 9). Neddylated E3 ubiquitin ligases are key mediators of posttranslational labeling of proteins for the proteasome (10). The CSN thus controls eukaryotic ubiquitin-dependent protein degradation.The complete eight-subunit CSN, composed of six PCI and two MPN domain proteins, was described for eukaryotes as humans (11), mice (12), plants (13), flies (14), and Dictyostelium (15). In fungi, definitive evidence for an eight-subunit CSN is lacking so far. CSN complex purification from Neurospora crassa revealed subunits 1-7, but subunit 8 was identified neither in the purification experiment nor in the genome sequence by bioinformatics means (16). In fission yeast subunits 6 and 8 have not been identified yet (17), and in the CSN-related complex of Saccharomyces cerevisiae only subunit Csn5 (yeast Rri1p) is well conserved (18).The fungal CSN complexes known to date are not essential for viability but are involved in cellu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.