BPH/2J mice are a genetic model of hypertension developed by Schlager 1 by crossing 8 normotensive strains and selecting for elevated blood pressure (BP). Normotensive BPN/3J control mice were bred concurrently by crossing randomly selected mice from the same base population. Recently, the mechanism of the hypertension has been recognized as neurogenic because ganglion blockade abolished the hypertension in BPH/2J mice.2 Furthermore, spectral analysis of BP revealed greater power in the autonomic frequency band, suggesting overactivity of the sympathetic nervous system (SNS), most prominently during the nocturnal active period.2 BPH/2J mice also display exaggerated daynight differences in BP, which are associated with greater neuronal activity in regions of the hypothalamus and amygdala known to be important for cardiovascular regulation. Given the recent success of renal sympathetic nerve ablation for the treatment of resistant hypertension, 3 the importance of renal influences on the expression of neurogenic hypertension has been highlighted. Importantly, the peripheral renin-angiotensin system (RAS) is closely linked to renal sympathetic nerve activity (RSNA) via its ability to stimulate renin secretion, 4 and also through angiotensin II-mediated facilitation of SNA. 5 However, the interaction of the kidney and renal RAS with SNS-mediated hypertension in BPH/2J mice has not been investigated thoroughly. The role of the RAS has been examined in a variety of ways in BPH/2J mice including by measurement of messenger RNA (mRNA) in tissues and various pharmacological assessments. [6][7][8][9][10] Iwao et al 8 reported normal renin activity in plasma, kidney, and submandibular gland of BPH/2J mice, although others found greater renin activity Abstract-Genetically hypertensive mice (BPH/2J) are hypertensive because of an exaggerated contribution of the sympathetic nervous system to blood pressure. We hypothesize that an additional contribution to elevated blood pressure is via sympathetically mediated activation of the intrarenal renin-angiotensin system. Our aim was to determine the contribution of the reninangiotensin system and sympathetic nervous system to hypertension in BPH/2J mice. BPH/2J and normotensive BPN/3J mice were preimplanted with radiotelemetry devices to measure blood pressure. Depressor responses to ganglion blocker pentolinium (5 mg/kg IP) in mice pretreated with the angiotensin-converting enzyme inhibitor enalaprilat (1.5 mg/kg IP) revealed a 2-fold greater sympathetic contribution to blood pressure in BPH/2J mice during the active and inactive period. However, the depressor response to enalaprilat was 4-fold greater in BPH/2J compared with BPN/3J mice, but only during the active period (P=0.01). This was associated with 1.6-fold higher renal renin messenger RNA (mRNA; P=0.02) and 0.8-fold lower abundance of micro-RNA-181a (P=0.03), identified previously as regulating human renin mRNA. Renin mRNA levels correlated positively with depressor responses to pentolinium (r=0.99; P=0.001), and BPH/2...
The rise in blood pressure during an acute aversive stress has been suggested to involve activation of angiotensin type 1A receptors (AT 1A Rs) at various sites within the brain, including the rostral ventrolateral medulla. In this study we examine the involvement of AT 1A Rs associated with a subclass of sympathetic premotor neurons of the rostral ventrolateral medulla, the C1 neurons. The distribution of putative AT 1A R-expressing cells was mapped throughout the brains of three transgenic mice with a bacterial artificial chromosomeexpressing green fluorescent protein under the control of the AT 1A R promoter. The overall distribution correlated with that of the AT 1A Rs mapped by other methods and demonstrated that the majority of C1 neurons express the AT 1A R. Cre-recombinase expression in C1 neurons of AT 1A R-floxed mice enabled demonstration that the pressor response to microinjection of angiotensin II into the rostral ventrolateral medulla is dependent upon expression of the AT 1A R in these neurons. Lentiviral-induced expression of wild-type AT 1A Rs in C1 neurons of global AT 1A R knock-out mice, implanted with radiotelemeter devices for recording blood pressure, modulated the pressor response to aversive stress. During prolonged cage-switch stress, expression of AT 1A Rs in C1 neurons induced a greater sustained pressor response when compared to the control viral-injected group (22 Ϯ 4 mmHg for AT 1A R vs 10 Ϯ 1 mmHg for GFP; p Ͻ 0.001), which was restored toward that of the wild-type group (28 Ϯ 2 mmHg). This study demonstrates that AT 1A R expression by C1 neurons is essential for the pressor response to angiotensin II and that this pathway plays an important role in the pressor response to aversive stress.
Low intensity exercise during pregnancy and lactation may create a protective effect against the development of obesity in offspring exposed to overnutrition in early life. To test these hypotheses, pregnant rats were randomly assigned into 2 groups: Sedentary and Exercised, low intensity, on a rodent treadmill at 30% VO2Max /30-minute/session/3x/week throughout pregnancy and the lactation. Male offspring were raised in small litters (SL, 3 pups/dam) and normal litters (NL, 9 pups/dam) as models of early overnutrition and normal feed, respectively. Exercised mothers showed low mesenteric fat pad stores and fasting glucose and improved glucose-insulin tolerance, VO2max during lactation and sympathetic activity. Moreover, the breast milk contained elevated levels of insulin. In addition, SL of sedentary mothers presented metabolic dysfunction and glucose and insulin intolerance and were hyperglycemic and hyperinsulinemic in adulthood. SL of exercised mothers showed lower fat tissue accretion and improvements in glucose tolerance, insulin sensitivity, insulinemia and glycemia. The results suggest that maternal exercise during the perinatal period can have a possible reprogramming effect to prevent metabolic dysfunction in adult rat offspring exposed to early overnutrition, which may be associated with the improvement in maternal health caused by exercise.
Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55–65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.