We assembled data from a global network of automated lake observatories to test hypotheses regarding the drivers of ecosystem metabolism. We estimated daily rates of respiration and gross primary production (GPP) for up to a full year in each lake, via maximum likelihood fits of a free-water metabolism model to continuous highfrequency measurements of dissolved oxygen concentrations. Uncertainties were determined by a bootstrap analysis, allowing lake-days with poorly constrained rate estimates to be down-weighted in subsequent analyses. GPP and respiration varied considerably among lakes and at seasonal and daily timescales. Mean annual GPP and respiration ranged from 0.1 to 5.0 mg O 2 L 21 d 21 and were positively related to total phosphorus but not dissolved organic carbon concentration. Within lakes, significant day-to-day differences in respiration were common despite large uncertainties in estimated rates on some lake-days. Daily variation in GPP explained 5% to 85% of the daily variation in respiration after temperature correction. Respiration was tightly coupled to GPP at a daily scale in oligotrophic and dystrophic lakes, and more weakly coupled in mesotrophic and eutrophic lakes. Background respiration ranged from 0.017 to 2.1 mg O 2 L 21 d 21 and was positively related to indicators of recalcitrant allochthonous and autochthonous organic matter loads, but was not clearly related to an indicator of the quality of allochthonous organic matter inputs.Gross primary production (GPP) and respiration are perhaps the two most fundamental processes in ecosystems. At the cellular or organismal level, they describe biochemical pathways that make organic carbon molecules and energy available to cells. When these cellular processes are integrated across an entire ecosystem, the result-ecosystemlevel GPP, ecosystem respiration, or collectively ecosystem metabolism-describes biogeochemical and trophic processes occurring at the system level.There is substantial interest in understanding the controls on ecosystem metabolism in aquatic (Mulholland et al.
[1] High-frequency physical observations from 40 temperate lakes were used to examine the relative contributions of wind shear (u * ) and convection (w * ) to turbulence in the surface mixed layer. Seasonal patterns of u * and w * were dissimilar; u * was often highest in the spring, while w * increased throughout the summer to a maximum in early fall. Convection was a larger mixed-layer turbulence source than wind shear (u * /w * < 0.75) for 18 of the 40 lakes, including all 11 lakes <10 ha. As a consequence, the relative contribution of convection to the gas transfer velocity (k, estimated by the surface renewal model) was greater for small lakes. The average k was 0.54 m day À1 for lakes <10 ha. Because u * and w * differ in temporal pattern and magnitude across lakes, both convection and wind shear should be considered in future formulations of lake-air gas exchange, especially for small lakes. Citation: Read, J. S., et al. (2012), Lake-size dependency of wind shear and convection as controls on gas exchange, Geophys. Res. Lett., 39, L09405,
The concentration of dissolved oxygen in aquatic systems helps regulate biodiveristy 1, 2 , nutrient biogeochemistry 3 , greenhouse gas emissions 4 , and drinking water quality 5 . The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity 6, 7 , but little is known about changes in dissolved oxygen concentrations in lakes. While dissolved oxygen solubility decreases with increasing water temperatures, long-term lake trajectories are not necessarily predictable. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification 8, 9 or they may increase as a result of enhanced primary production 10 . Here we analyse 45,148 dissolved oxygen and temperature profiles from 393 temperate lakes spanning 1941-2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although surface dissolved oxygen increased in a subset of highly-productive warming lakes, likely due to increasing phytoplankton production. In contrast, the decline in deep waters is associated with stronger thermal stratification and water clarity losses, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Freshwater dissolved oxygen losses are 2.5-10 times greater than observed in the world's oceans 6, 7 and could threaten essential lake ecosystem services 2,3,5,11 .
Interactions between climate change and UV radiation are having strong effects on aquatic ecosystems due to feedback between temperature, UV radiation, and greenhouse gas concentration. Higher air temperatures and incoming solar radiation are increasing the surface water temperatures of lakes and oceans, with many large lakes warming at twice the rate of regional air temperatures. Warmer oceans are changing habitats and the species composition of many marine ecosystems. For some, such as corals, the temperatures may become too high. Temperature differences between surface and deep waters are becoming greater. This increase in thermal stratification makes the surface layers shallower and leads to stronger barriers to upward mixing of nutrients necessary for photosynthesis. This also results in exposure to higher levels of UV radiation of surface-dwelling organisms. In polar and alpine regions decreases in the duration and amount of snow and ice cover on lakes and oceans are also increasing exposure to UV radiation. In contrast, in lakes and coastal oceans the concentration and colour of UV-absorbing dissolved organic matter (DOM) from terrestrial ecosystems is increasing with greater runoff from higher precipitation and more frequent extreme storms. DOM thus creates a refuge from UV radiation that can enable UV-sensitive species to become established. At the same time, decreased UV radiation in such surface waters reduces the capacity of solar UV radiation to inactivate viruses and other pathogens and parasites, and increases the difficulty and price of purifying drinking water for municipal supplies. Solar UV radiation breaks down the DOM, making it more available for microbial processing, resulting in the release of greenhouse gases into the atmosphere. In addition to screening solar irradiance, DOM, when sunlit in surface water, can lead to the formation of reactive oxygen species (ROS). Increases in carbon dioxide are in turn acidifying the oceans and inhibiting the ability of many marine organisms to form UV-absorbing exoskeletons. Many aquatic organisms use adaptive strategies to mitigate the effects of solar UV-B radiation (280-315 nm), including vertical migration, crust formation, synthesis of UV-absorbing substances, and enzymatic and non-enzymatic quenching of ROS. Whether or not genetic adaptation to changes in the abiotic factors plays a role in mitigating stress and damage has not been determined. This assessment addresses how our knowledge of the interactive effects of UV radiation and climate change factors on aquatic ecosystems has advanced in the past four years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.