Without an approved vaccine or treatment, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. Here we show that a combination of monoclonal antibodies (ZMapp™), optimized from two previous antibody cocktails, is able to rescue 100% of rhesus macaques when treatment is initiated up to 5 days post-challenge. High fever, viremia, and abnormalities in blood count and chemistry were evident in many animals before ZMapp™ intervention. Advanced disease, as indicated by elevated liver enzymes, mucosal hemorrhages and generalized petechia could be reversed, leading to full recovery. ELISA and neutralizing antibody assays indicate that ZMapp™ is cross-reactive with the Guinean variant of Ebola. ZMapp™ currently exceeds all previous descriptions of efficacy with other therapeutics, and results warrant further development of this cocktail for clinical use.
To determine whether or not large macromolecules and viruses can diffuse through mucus, we observed the motion of proteins, microspheres, and viruses in fresh samples of human cervical mucus using fluorescent recovery after photobleaching and multiple image photography. Two capsid virus-like particles, human papilloma virus (55 nm, approximately 20,000 kDa) and Norwalk virus (38 nm, approximately 10,000 kDa), as well as most of the globular proteins tested (15-650 kDa) diffused as rapidly in mucus as in saline. Electron microscopy of cervical mucus confirmed that the mesh spacing between mucin fibers is large enough (20-200 nm) for small viruses to diffuse essentially unhindered through mucus. In contrast, herpes simplex virus (180 nm) colocalized with strands of thick mucus, suggesting that herpes simplex virus, unlike the capsid virus particles, makes low-affinity bonds with mucins. Polystyrene microspheres (59-1000 nm) bound more tightly to mucins, bundling them into thick cables. Although immunoglobulins are too small to be slowed by the mesh spacing between mucins, diffusion by IgM was slowed by mucus. Diffusion by IgM-Fc(5 mu), the Fc pentamer core of an IgM with all 10 Fab moieties removed, was comparably slowed by mucus. This suggests that the Fc moieties of antibodies make low-affinity bonds with mucins.
Filovirus infections can cause a severe and often fatal disease in humans and nonhuman primates, including great apes. Here, three anti-Ebola virus mouse/human chimeric mAbs (c13C6, h-13F6, and c6D8) were produced in Chinese hamster ovary and in whole plant (Nicotiana benthamiana) cells. In pilot experiments testing a mixture of the three mAbs (MB-003), we found that MB-003 produced in both manufacturing systems protected rhesus macaques from lethal challenge when administered 1 h postinfection. In a pivotal followup experiment, we found significant protection (P < 0.05) when MB-003 treatment began 24 or 48 h postinfection (four of six survived vs. zero of two controls). In all experiments, surviving animals that received MB-003 experienced little to no viremia and had few, if any, of the clinical symptoms observed in the controls. The results represent successful postexposure in vivo efficacy by a mAb mixture and suggest that this immunoprotectant should be further pursued as a postexposure and potential therapeutic for Ebola virus exposure.passive immunization | therapy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.