Recent developments in experimental technologies such as single-cell RNA sequencing have enabled the profiling a high-dimensional number of genome-wide features in individual cells, inspiring the formation of large-scale data generation projects quantifying unprecedented levels of biological variation at the single-cell level. The data generated in such projects exhibits unique characteristics, including increased sparsity and scale, in terms of both the number of features and the number of samples. Due to these unique characteristics, specialized statistical methods are required along with fast and efficient software implementations in order to successfully derive biological insights. Bioconductor -an open-source, open-development software project based on the R programming language -has pioneered the analysis of such high-throughput, high-dimensional biological data, leveraging a rich history of software and methods development that has spanned the era of sequencing. Featuring state-of-the-art computational methods, standardized data infrastructure, and interactive data visualization tools that are all easily accessible as software packages, Bioconductor has made it possible for a diverse audience to analyze data derived from cutting-edge single-cell assays. Here, we present an overview of single-cell RNA sequencing analysis for prospective users and contributors, highlighting the contributions towards this effort made by Bioconductor. 1. CC-BY-NC-ND 4.0 International license a certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under packages associated with the analysis of sequencing technology were tracked by the total number of packages (left) and the number of distinct IPs (data recorded monthly) visiting their online documentation (right) over the course of ten years. Software packages were uniquely defined by their primary sequencing technology association, with examples of specific terms used for annotation below in parentheses.
Summary Host microbial cross-talk is essential to maintain intestinal homeostasis. However, maladaptation of this response through microbial dysbiosis or defective host defense toward invasive intestinal bacteria can result in chronic inflammation. We have shown that macrophages differentiated in the presence of the bacterial metabolite butyrate display enhanced antimicrobial activity. Butyrate-induced antimicrobial activity was associated with a shift in macrophage metabolism, a reduction in mTOR kinase activity, increased LC3-associated host defense and anti-microbial peptide production in the absence of an increased inflammatory cytokine response. Butyrate drove this monocyte to macrophage differentiation program through histone deacetylase 3 (HDAC3) inhibition. Administration of butyrate induced antimicrobial activity in intestinal macrophages in vivo and increased resistance to enteropathogens. Our data suggest that (1) increased intestinal butyrate might represent a strategy to bolster host defense without tissue damaging inflammation and (2) that pharmacological HDAC3 inhibition might drive selective macrophage functions toward antimicrobial host defense.
Supplemental Digital Content is available in the text.
BackgroundDomestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals.ResultsPhylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle.ConclusionsThis work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0790-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.