Accurate storm identification and tracking are basic and essential parts of radar and severe weather warning operations in today's operational meteorological community. Improvements over the original WSR-88D storm series algorithm have been made with the Storm Cell Identification and Tracking algorithm (SCIT). This paper discusses the SCIT algorithm, a centroid tracking algorithm with improved methods of identifying storms (both isolated and clustered or line storms). In an analysis of 6561 storm cells, the SCIT algorithm correctly identified 68% of all cells with maximum reflectivities over 40 dBZ and 96% of all cells with maximum reflectivities of 50 dBZ or greater. The WSR-88D storm series algorithm performed at 24% and 41%, respectively, for the same dataset. With better identification performance, the potential exists for better and more accurate tracking information. The SCIT algorithm tracked greater than 90% of all storm cells correctly.The algorithm techniques and results of a detailed performance evaluation are presented. This algorithm was included in the WSR-88D Build 9.0 of the Radar Products Generator software during late 1996 and early 1997. It is hoped that this paper will give new users of the algorithm sufficient background information to use the algorithm with confidence.
During the 2005 NOAA Hazardous Weather Testbed Spring Experiment two different high-resolution configurations of the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model were used to produce 30-h forecasts 5 days a week for a total of 7 weeks. These configurations used the same physical parameterizations and the same input dataset for the initial and boundary conditions, differing primarily in their spatial resolution. The first set of runs used 4-km horizontal grid spacing with 35 vertical levels while the second used 2-km grid spacing and 51 vertical levels.Output from these daily forecasts is analyzed to assess the numerical forecast sensitivity to spatial resolution in the upper end of the convection-allowing range of grid spacing. The focus is on the central United States and the time period 18-30 h after model initialization. The analysis is based on a combination of visual comparison, systematic subjective verification conducted during the Spring Experiment, and objective metrics based largely on the mean diurnal cycle of the simulated reflectivity and precipitation fields. Additional insight is gained by examining the size distributions of the individual reflectivity and precipitation entities, and by comparing forecasts of mesocyclone occurrence in the two sets of forecasts.In general, the 2-km forecasts provide more detailed presentations of convective activity, but there appears to be little, if any, forecast skill on the scales where the added details emerge. On the scales where both model configurations show higher levels of skill-the scale of mesoscale convective features-the numerical forecasts appear to provide comparable utility as guidance for severe weather forecasters. These results suggest that, for the geographical, phenomenological, and temporal parameters of this study, any added value provided by decreasing the grid increment from 4 to 2 km (with commensurate adjustments to the vertical resolution) may not be worth the considerable increases in computational expense.
During the 2007 NOAA Hazardous Weather Testbed Spring Experiment, the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma produced a daily 10-member 4-km horizontal resolution ensemble forecast covering approximately three-fourths of the continental United States. Each member used the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) model core, which was initialized at 2100 UTC, ran for 33 h, and resolved convection explicitly. Different initial condition (IC), lateral boundary condition (LBC), and physics perturbations were introduced in 4 of the 10 ensemble members, while the remaining 6 members used identical ICs and LBCs, differing only in terms of microphysics (MP) and planetary boundary layer (PBL) parameterizations. This study focuses on precipitation forecasts from the ensemble.The ensemble forecasts reveal WRF-ARW sensitivity to MP and PBL schemes. For example, over the 7-week experiment, the Mellor-Yamada-Janjić PBL and Ferrier MP parameterizations were associated with relatively high precipitation totals, while members configured with the Thompson MP or Yonsei University PBL scheme produced comparatively less precipitation. Additionally, different approaches for generating probabilistic ensemble guidance are explored. Specifically, a ''neighborhood'' approach is described and shown to considerably enhance the skill of probabilistic forecasts for precipitation when combined with a traditional technique of producing ensemble probability fields.
An enhanced hail detection algorithm (HDA) has been developed for the WSR-88D to replace the original hail algorithm. While the original hail algorithm simply indicated whether or not a detected storm cell was producing hail, the new HDA estimates the probability of hail (any size), probability of severe-size hail (diameter Ն19 mm), and maximum expected hail size for each detected storm cell. A new parameter, called the severe hail index (SHI), was developed as the primary predictor variable for severe-size hail. The SHI is a thermally weighted vertical integration of a storm cell's reflectivity profile. Initial testing on 10 storm days showed that the new HDA performed considerably better at predicting severe hail than the original hail algorithm. Additional testing of the new HDA on 31 storm days showed substantial regional variations in performance, with best results across the southern plains and weaker performance for regions farther east.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.