BackgroundData comparing systemic exposure and systemic vascular endothelial growth factor (VEGF) suppression of ranibizumab, bevacizumab and aflibercept following intravitreal injection are lacking.MethodsFifty-six patients with wet age-related macular degeneration received intravitreal ranibizumab (0.5 mg), bevacizumab (1.25 mg), or aflibercept (2.0 mg). Serum pharmacokinetics and plasma free VEGF were evaluated after the first and third injections.ResultsFollowing the first dose, systemic exposure to aflibercept was 5-, 37-, and 9-fold higher than ranibizumab, whereas, bevacizumab was 9-, 310-, and 35-fold higher than ranibizumab, based on geometric mean ratio of peak and trough concentrations and area under the curve, respectively. The third dose showed accumulation of bevacizumab and aflibercept but not ranibizumab. Aflibercept substantially suppressed plasma free VEGF, with mean levels below lower limit of quantitation (10 pg/mL) as early as 3 h postdose until ≥7 days postdose. Mean free (unbound) VEGF levels with ranibizumab were largely unchanged, with mean trough level of 14.4 pg/mL compared with baseline of 17 pg/mL.ConclusionsThere are notable differences in systemic pharmacokinetics and pharmacodynamics among anti-VEGF treatments after intravitreal administration. All three agents rapidly moved into the bloodstream, but ranibizumab very quickly cleared, whereas bevacizumab and aflibercept demonstrated greater systemic exposure and produced a marked reduction in plasma free VEGF.Trial registration numberNCT02118831.
After monthly intravitreal injections, the systemic exposures of aflibercept, bevacizumab, and ranibizumab were distinct and correlated with different reductions in plasma free–vascular endothelial growth factor, which could provide biologic plausibility for potential differences in systemic adverse events.
Geographic atrophy is an advanced form of age-related macular degeneration (AMD) and a leading cause of vision loss for which there are no approved treatments. Genetic studies in AMD patients have implicated dysregulation of the alternative complement pathway in the pathogenesis of geographic atrophy. Lampalizumab is a potential therapeutic that targets complement factor D, a pivotal activator of the alternative complement pathway. The MAHALO phase 2 clinical trial was a multicenter, randomized, controlled study that evaluated lampalizumab administered by intravitreal injection monthly ( = 42) and every other month ( = 41) versus sham control ( = 40) in patients with geographic atrophy secondary to AMD. The primary endpoint was the mean change in lesion area from baseline to month 18 as measured by fundus autofluorescence. Specific AMD-associated genetic polymorphisms were also analyzed. The MAHALO study met its primary efficacy endpoint with an acceptable safety profile; monthly lampalizumab treatment demonstrated a 20% reduction in lesion area progression versus sham control [80% confidence interval (CI), 4 to 37%]. A more substantial monthly treatment benefit of 44% reduction in geographic atrophy area progression versus sham control (95% CI, 15 to 73%) was observed in a subgroup of complement factor I () risk-allele carriers (57% of the patients analyzed were risk-allele carriers). The MAHALO study shows a potential treatment effect in patients with geographic atrophy and supports therapeutic targeting of the alternative complement pathway for treating AMD pathogenesis.
Purpose: Lower-grade gliomas (LGGs) are malignant tumors in young adults. Current therapy is associated with short-and long-term toxicity. Progression to higher tumor grade is associated with contrast enhancement on MRI. The majority of LGGs harbor mutations in the genes encoding isocitrate dehydrogenase 1 or 2 (IDH1/IDH2).Vorasidenib (AG-881) is a first-in-class, brain-penetrant, dual inhibitor of the mutant IDH1 and mutant IDH2 enzymes.
Experimental Design:We conducted a multicenter, open-label, phase I, dose escalation study of vorasidenib in 93 patients with mutant IDH1/2 (mIDH1/2) solid tumors, including 52 patients with glioma that had recurred or progressed following standard therapy. Vorasidenib was administered orally, once daily, in 28-day cycles until progression or unacceptable toxicity. Enrollment is complete; this trial is registered with ClinicalTrials.gov, NCT02481154.Results: Vorasidenib showed a favorable safety profile in the glioma cohort. Doselimiting toxicities of elevated transaminases occurred at doses >100 mg and were reversible. The protocol-defined objective response rate per Response Assessment in Neuro-Oncology criteria for LGG (RANO-LGG) in patients with nonenhancing glioma was 18% (one partial response, three minor responses). The median progression-free survival was 36.8 months [95% confidence interval (CI), 11.2-40.8] for patients with nonenhancing glioma and 3.6 months (95% CI, 1.8-6.5) for patients with enhancing glioma. Exploratory evaluation of tumor volumes in patients with nonenhancing glioma showed sustained tumor shrinkage in multiple patients.Research.
A cross‐industry survey was conducted to assess the landscape of preclinical quantitative systems pharmacology (QSP) modeling within pharmaceutical companies. This article presents the survey results, which provide insights on the current state of preclinical QSP modeling in addition to future opportunities. Our results call attention to the need for an aligned definition and consistent terminology around QSP, yet highlight the broad applicability and benefits preclinical QSP modeling is currently delivering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.