Hybrid perovskite thin films have demonstrated impressive performance for solar energy conversion and optoelectronic applications. However, further progress will benefit from a better knowledge of the intrinsic photophysics of materials. Here, the temperature-dependent emission properties of CHNHPbI single crystals are investigated and compared to those of thin polycrystalline films by means of steady-state and time-resolved photoluminescence spectroscopy. Single crystals photoluminescence present a sharp excitonic emission at high energy, with full width at half maximum of only 5 meV, assigned to free excitonic recombination. We highlight a strong thermal broadening of the free excitonic emission, due to exciton-LO-phonon coupling. The emission turned to be very short-lived with a subnanosecond dynamics, mainly induced by the fast trapping of the excitons. The free excitonic emission is completely absent of the thin film spectra, which are dominated by trap state bands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.