Ketosis, the metabolic response to energy crisis, is a mechanism to sustain life by altering oxidative fuel selection. Often overlooked for its metabolic potential, ketosis is poorly understood outside of starvation or diabetic crisis. Thus, we studied the biochemical advantages of ketosis in humans using a ketone ester-based form of nutrition without the unwanted milieu of endogenous ketone body production by caloric or carbohydrate restriction. In five separate studies of 39 high-performance athletes, we show how this unique metabolic state improves physical endurance by altering fuel competition for oxidative respiration. Ketosis decreased muscle glycolysis and plasma lactate concentrations, while providing an alternative substrate for oxidative phosphorylation. Ketosis increased intramuscular triacylglycerol oxidation during exercise, even in the presence of normal muscle glycogen, co-ingested carbohydrate and elevated insulin. These findings may hold clues to greater human potential and a better understanding of fuel metabolism in health and disease.
Addition of insulin or a physiological ratio of ketone bodies to buffer with 10 mM glucose increased efficiency (hydraulic work/energy from O2 consumed) of working rat heart by 25%, and the two in combination increased efficiency by 36%. These additions increased the content of acetyl CoA by 9- to 18-fold, increased the contents of metabolites of the first third of the tricarboxylic acid (TCA) cycle 2- to 5-fold, and decreased succinate, oxaloacetate, and aspartate 2- to 3-fold. Succinyl CoA, fumarate, and malate were essentially unchanged. The changes in content of TCA metabolites resulted from a reduction of the free mitochondrial NAD couple by 2- to 10-fold and oxidation of the mitochondrial coenzyme Q couple by 2- to 4-fold. Cytosolic pH, measured using 31P-NMR spectra, was invariant at about 7.0. The total intracellular bicarbonate indicated an increase in mitochondrial pH from 7.1 with glucose to 7.2, 7.5 and 7.4 with insulin, ketones, and the combination, respectively. The decrease in Eh7 of the mitochondrial NAD couple, Eh7NAD+/NADH, from -280 to -300 mV and the increase in Eh7 of the coenzyme Q couple, Eh7Q/QH2, from -4 to +12 mV was equivalent to an increase from -53 kJ to -60 kJ/2 mol e in the reaction catalyzed by the mitochondrial NADH dehydrogenase multienzyme complex (EC 1.6.5.3). The increase in the redox energy of the mitochondrial cofactor couples paralleled the increase in the free energy of cytosolic ATP hydrolysis, delta GATP. The potential of the mitochondrial relative to the cytosolic phases, Emito/cyto, calculated from delta GATP and delta pH on the assumption of a 4 H+ transfer for each ATP synthesized, was -143 mV during perfusion with glucose or glucose plus insulin, and decreased to -120 mV on addition of ketones. Viewed in this light, the moderate ketosis characteristic of prolonged fasting or type II diabetes appears to be an elegant compensation for the defects in mitochondrial energy transduction associated with acute insulin deficiency or mitochondrial senescence.
Background-It is well known that patients with type 2 diabetes have increased risk of cardiovascular disease, but it is not known whether they have underlying abnormalities in cardiac or skeletal muscle high-energy phosphate metabolism. Methods and Results-We studied 21 patients with type 2 diabetes with no evidence of coronary artery disease or impaired cardiac function, as determined by echocardiography, and 15 age-, sex-, and body mass index-matched control subjects. Cardiac high-energy phosphate metabolites were measured at rest using 31 P nuclear magnetic resonance spectroscopy (MRS). Skeletal muscle high-energy phosphate metabolites, intracellular pH, and oxygenation were measured using 31 P MRS and near infrared spectrophotometry, respectively, before, during, and after exercise. Although their cardiac morphology, mass, and function appeared to be normal, the patients with diabetes had significantly lower phosphocreatine (PCr)/ATP ratios, at 1.50Ϯ0.11, than the healthy volunteers, at 2.30Ϯ0.12. The cardiac PCr/ATP ratios correlated negatively with the fasting plasma free fatty acid concentrations. Although skeletal muscle energetics and pH were normal at rest, PCr loss and pH decrease were significantly faster during exercise in the patients with diabetes, who had lower exercise tolerance. After exercise, PCr recovery was slower in the patients with diabetes and correlated with tissue reoxygenation times. The exercise times correlated negatively with the deoxygenation rates and the hemoglobin (Hb)A 1c levels and the reoxygenation times correlated positively with the HbA 1c levels. Conclusions-Type
The heroin analogue 1-methyl-4-phenylpyridinium, MPP + , both in vitro and in vivo , produces death of dopaminergic substantia nigral cells by inhibiting the mitochondrial NADH dehydrogenase multienzyme complex, producing a syndrome indistinguishable from Parkinson's disease. Similarly, a fragment of amyloid protein, Aβ 1–42 , is lethal to hippocampal cells, producing recent memory deficits characteristic of Alzheimer's disease. Here we show that addition of 4 mM d -β-hydroxybutyrate protected cultured mesencephalic neurons from MPP + toxicity and hippocampal neurons from Aβ 1–42 toxicity. Our previous work in heart showed that ketone bodies, normal metabolites, can correct defects in mitochondrial energy generation. The ability of ketone bodies to protect neurons in culture suggests that defects in mitochondrial energy generation contribute to the pathophysiology of both brain diseases. These findings further suggest that ketone bodies may play a therapeutic role in these most common forms of human neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.