Background Although many pain-related smartphone apps exist, little attention has been given to understanding how these apps are used over time and what factors contribute to greater compliance and patient engagement. Objective This retrospective analysis was designed to help identify factors that predicted the benefits and future use of a smartphone pain app among patients with chronic pain. Methods An app designed for both Android and iOS devices was developed by Brigham and Women’s Hospital Pain Management Center (BWH-PMC) for users with chronic pain to assess and monitor pain and communicate with their providers. The pain app offered chronic pain assessment, push notification reminders and communication, personalized goal setting, relaxation sound files, topics of interest with psychological and medical pain management strategies, and line graphs from daily assessments. BWH-PMC recruited 253 patients with chronic pain over time to use the pain app. All subjects completed baseline measures and were asked to record their progress every day using push notification daily assessments. After 3 months, participants completed follow-up questionnaires and answered satisfaction questions. We defined the number of completed daily assessments as a measure of patient engagement with the pain app. Results The average age of participants was 51.5 years (SD 13.7, range 18-92), 72.8% (182/253) were female, and 36.8% (78/212) reported the low back as their primary pain site. The number of daily assessments ranged from 1 to 426 (average 62.0, SD 49.9). The app was easy to introduce among patients, and it was well accepted. Those who completed more daily assessments (greater patient engagement) throughout the study were more likely to report higher pain intensity, more activity interference, and greater disability and were generally overweight compared with others. Patients with higher engagement with the app rated the app as offering greater benefit in coping with their pain and expressed more willingness to use the app in the future (P<.05) compared with patients showing lower engagement. Patients completing a small number of daily assessments reported less pain intensity, less daily activity interference, and less pain-related disability on average and were less likely to use the two-way messaging than those who were more engaged with the pain app (P<.05). Conclusions Patients with chronic pain who appeared to manage their pain better were less likely to report benefits of a smartphone pain app designed for chronic pain management. They demonstrated lower patient engagement in reporting their daily progress, in part, owing to the perceived burden of regularly using an app without a perceived benefit. An intrinsically different pain app designed and targeted for individuals based on early identification of user characteristics and adapted for each individual would likely improve compliance and app-related patient engagement.
Background Nonvalvular atrial fibrillation (NVAF) affects almost 6 million Americans and is a major contributor to stroke but is significantly undiagnosed and undertreated despite explicit guidelines for oral anticoagulation. Objective The aim of this study is to investigate whether the use of semisupervised natural language processing (NLP) of electronic health record’s (EHR) free-text information combined with structured EHR data improves NVAF discovery and treatment and perhaps offers a method to prevent thousands of deaths and save billions of dollars. Methods We abstracted 96,681 participants from the University of Buffalo faculty practice’s EHR. NLP was used to index the notes and compare the ability to identify NVAF, congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke or transient ischemic attack, vascular disease, age 65 to 74 years, sex category (CHA2DS2-VASc), and Hypertension, Abnormal liver/renal function, Stroke history, Bleeding history or predisposition, Labile INR, Elderly, Drug/alcohol usage (HAS-BLED) scores using unstructured data (International Classification of Diseases codes) versus structured and unstructured data from clinical notes. In addition, we analyzed data from 63,296,120 participants in the Optum and Truven databases to determine the NVAF frequency, rates of CHA2DS2‑VASc ≥2, and no contraindications to oral anticoagulants, rates of stroke and death in the untreated population, and first year’s costs after stroke. Results The structured-plus-unstructured method would have identified 3,976,056 additional true NVAF cases (P<.001) and improved sensitivity for CHA2DS2-VASc and HAS-BLED scores compared with the structured data alone (P=.002 and P<.001, respectively), causing a 32.1% improvement. For the United States, this method would prevent an estimated 176,537 strokes, save 10,575 lives, and save >US $13.5 billion. Conclusions Artificial intelligence–informed bio-surveillance combining NLP of free-text information with structured EHR data improves data completeness, prevents thousands of strokes, and saves lives and funds. This method is applicable to many disorders with profound public health consequences.
Background Although the American Heart Association and other professional societies have recommended shared decision-making as a way for patients with atrial fibrillation (AF) or atrial flutter to make informed decisions about using anticoagulation (AC), the best method for facilitating shared decision-making remains uncertain. Objective The aim of this study is to assess the AFib 2gether mobile app for usability, perceived usefulness, and the extent and nature of shared decision-making that occurred for clinical encounters between patients with AF and their cardiology providers in which the app was used. Methods We identified patients visiting a cardiology provider between October 2019 and May 2020. We measured usability from patients and providers using the Mobile App Rating Scale. From the 8 items of the Mobile App Rating Scale, we reported the average score (out of 5) for domains of functionality, esthetics, and overall quality. We administered a 3-item questionnaire to patients relating to their perceived usefulness of the app and a separate 3-item questionnaire to providers to measure their perceived usefulness of the app. We performed a chart review to track the occurrence of AC within 6 months of the index visit. We also audio recorded a subset of the encounters to identify evidence of shared decision-making. Results We facilitated shared decision-making visits for 37 patients visiting 13 providers. In terms of usability, patients’ average ratings of functionality, esthetics, and overall quality were 4.51 (SD 0.61), 4.26 (SD 0.51), and 4.24 (SD 0.89), respectively. In terms of usefulness, 41% (15/37) of patients agreed that the app improved their knowledge regarding AC, and 62% (23/37) agreed that the app helped clarify to their provider their preferences regarding AC. Among providers, 79% (27/34) agreed that the app helped clarify their patients’ preferences, 82% (28/34) agreed that the app saved them time, and 59% (20/34) agreed that the app helped their patients make decisions about AC. In addition, 32% (12/37) of patients started AC after their shared decision-making visits. We audio recorded 25 encounters. Of these, 84% (21/25) included the mention of AC for AF, 44% (11/25) included the discussion of multiple options for AC, 72% (18/25) included a provider recommendation for AC, and 48% (12/25) included the evidence of patient involvement in the discussion. Conclusions Patients and providers rated the app with high usability and perceived usefulness. Moreover, one-third of the patients began AC, and approximately 50% (12/25) of the encounters showed evidence of patient involvement in decision-making. In the future, we plan to study the effect of the app on a larger sample and with a controlled study design. Trial Registration ClinicalTrials.gov NCT04118270; https://clinicaltrials.gov/ct2/show/NCT04118270 International Registered Report Identifier (IRRID) RR2-21986
Background The Centers for Disease Control and Prevention has estimated that atrial fibrillation (AF) affects between 2.7 million and 6.1 million people in the United States. Those who have AF tend to have a much higher stroke risk than others. Although most individuals with AF benefit from anticoagulation (AC) therapy, a significant majority are hesitant to start it. To add, providers often struggle in helping patients negotiate the decision to start AC therapy. To assist in the communication between patients and providers regarding preferences and knowledge about AC therapy, different strategies are being used to try and solve this problem. In this research study, we will have patients and providers utilize the AFib 2gether app with hopes that it will create a platform for shared decision making regarding the prevention of stroke in patients with AF receiving AC therapy. Objective The aim of our study is to measure several outcomes related to encounters between patients and their cardiology providers where AFib 2gether is used. These outcomes include usability and perceived usefulness of the app from the perspective of patients and providers. In addition, we will assess the extent and nature of shared decision making. Methods Eligible patients and providers will evaluate the AFib 2gether mobile app for usability and perceived usefulness in facilitating shared decision making regarding understanding the patient’s risk of stroke and whether or not to start AC therapy. Both patients and providers will review the app and complete multiple questionnaires about the usability and perceived usefulness of the mobile app in a clinical setting. We will also audio-record a subset of encounters to assess for evidence of shared decision making. Results Enrollment in the AFib 2gether shared decision-making study is still ongoing for both patients and providers. The first participant enrolled on November 22, 2019. Analysis and publishing of results are expected to be completed in spring 2021. Conclusions The AFib 2gether app emerged from a desire to increase the ability of patients and providers to engage in shared decision making around understanding the risk of stroke and AC therapy. We anticipate that the AFib 2gether mobile app will facilitate patient discussion with their cardiologist and other providers. Additionally, we hope the study will help us identify barriers that providers face when placing patients on AC therapy. We aim to demonstrate the usability and perceived usefulness of the app with a future goal of testing the value of our approach in a larger sample of patients and providers at multiple medical centers across the country. Trial Registration ClinicalTrials.gov NCT04118270; https://clinicaltrials.gov/ct2/show/NCT04118270 International Registered Report Identifier (IRRID) DERR1-10.2196/21986
Background: Wild-type transthyretin amyloid cardiomyopathy (ATTR-CM) is a frequently under-recognized cause of heart failure (HF) in older patients. To improve identification of patients at risk for the disease, we initiated a pilot program in which 9 cardiac/non-cardiac phenotypes and 20 high-performing phenotype combinations predictive of wild-type ATTR-CM were operationalized in electronic health record (EHR) configurations at a large academic medical center. Methods: Inclusion criteria were age >50 years and HF; exclusion criteria were end-stage renal disease and prior amyloidosis diagnoses. The different Epic EHR configurations investigated were a clinical decision support tool (Best Practice Advisory) and operational/analytical reports (Clarity™, Reporting Workbench™, and SlicerDicer); the different data sources employed were problem list, visit diagnosis, medical history, and billing transactions. Results: With Clarity, among 45 051 patients with HF, 4006 patients (8.9%) had ⩾1 phenotype combination associated with increased risk of wild-type ATTR-CM. Across all data sources, 2 phenotypes (cardiomegaly; osteoarthrosis) and 2 combinations (carpal tunnel syndrome + HF; atrial fibrillation + heart block + cardiomegaly + osteoarthrosis) generated the highest proportions of patients for wild-type ATTR-CM screening. Conclusion: All EHR configurations tested were capable of operationalizing phenotypes or phenotype combinations to identify at-risk patients; the Clarity report was the most comprehensive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.