We have generated Cbfa1-deficient mice. Homozygous mutants die of respiratory failure shortly after birth. Analysis of their skeletons revealed an absence of osteoblasts and bone. Heterozygous mice showed specific skeletal abnormalities that are characteristic of the human heritable skeletal disorder, cleidocranial dysplasia (CCD). These defects are also observed in a mouse Ccd mutant for this disease. The Cbfa1 gene was shown to be deleted in the Ccd mutation. Analysis of embryonic Cbfa1 expression using a lacZ reporter gene revealed strong expression at sites of bone formation prior to the earliest stages of ossification. Thus, the Cbfa1 gene is essential for osteoblast differentiation and bone formation, and the Cbfa1 heterozygous mouse is a paradigm for a human skeletal disorder.
A 15-year-old cystic fibrosis patient with a disseminated
Mycobacterium abscessus
infection was treated with a three-phage cocktail following bilateral lung transplantation. Effective lytic phage derivatives that efficiently kill the infectious
M. abscessus
strain were developed by genome engineering and forward genetics. Intravenous phage treatment was well tolerated and associated with objective clinical improvement including sternal wound closure, improved liver function, and substantial resolution of infected skin nodules.
Autologous T cells engineered to express chimeric antigen receptor against the B cell antigen CD19 (CAR19) are achieving marked leukemic remissions in early-phase trials but can be difficult to manufacture, especially in infants or heavily treated patients. We generated universal CAR19 (UCART19) T cells by lentiviral transduction of non-human leukocyte antigen-matched donor cells and simultaneous transcription activator-like effector nuclease (TALEN)-mediated gene editing of T cell receptor α chain and CD52 gene loci. Two infants with relapsed refractory CD19 B cell acute lymphoblastic leukemia received lymphodepleting chemotherapy and anti-CD52 serotherapy, followed by a single-dose infusion of UCART19 cells. Molecular remissions were achieved within 28 days in both infants, and UCART19 cells persisted until conditioning ahead of successful allogeneic stem cell transplantation. This bridge-to-transplantation strategy demonstrates the therapeutic potential of gene-editing technology.
We generated a novel CD19CAR (CAT) with a lower affinity than FMC63, the binder utilised in many clinical studies. CAT CAR T cells showed increased proliferation/cytotoxicity in vitro and enhanced proliferative capacity and anti-tumor activity than FMC63 CAR T cells in a xenograft model. In a clinical study (CARPALL, NCT02443831), 12/14 patients with relapsed/refractory pediatric BALL obtained molecular remission after CAT CAR T cell therapy. CAR T cell expansion compared favourably with published data on other CD19CARs and persistence was demonstrated in 11 of 14 patients at last follow-up. Toxicity was low with no severe cytokine release syndrome. At a median follow up of 14 months, 5/14 patients (37%) remain in molecular CR with circulating CAR T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.