The primary circadian pacemaker, in the suprachiasmatic nucleus (SCN) of the mammalian brain, is photoentrained by light signals from the eyes through the retinohypothalamic tract. Retinal rod and cone cells are not required for photoentrainment. Recent evidence suggests that the entraining photoreceptors are retinal ganglion cells (RGCs) that project to the SCN. The visual pigment for this photoreceptor may be melanopsin, an opsin-like protein whose coding messenger RNA is found in a subset of mammalian RGCs. By cloning rat melanopsin and generating specific antibodies, we show that melanopsin is present in cell bodies, dendrites, and proximal axonal segments of a subset of rat RGCs. In mice heterozygous for tau-lacZ targeted to the melanopsin gene locus, β-galactosidase-positive RGC axons projected to the SCN and other brain nuclei involved in circadian photoentrainment or the pupillary light reflex. Rat RGCs that exhibited intrinsic photosensitivity invariably expressed melanopsin. Hence, melanopsin is most likely the visual pigment of phototransducing RGCs that set the circadian clock and initiate other non-image-forming visual functions.Retinal rods and cones, with their light-sensitive, opsin-based pigments, are the primary photoreceptors for vertebrate vision. Visual signals are transmitted to the brain through RGCs, the output neurons whose axons form the optic nerve. This system, through its projections to the lateral geniculate nucleus and the midbrain, is responsible for interpreting and tracking visual objects and patterns. A separate visual circuit, running in parallel with this imageforming visual system, encodes the general level of environmental illumination and drives certain photic responses, including synchronization of the biological clock with the light-dark cycle (1), control of pupil size (2), acute suppression of locomotor behavior (3), melatonin release (4), and others (5-7). Surprisingly, this non-image-forming system does not appear to originate from rods and cones. For example, rods and cones are not required for photoentrainment of circadian rhythms (8), a function mediated by the retinohypothalamic tract (9,10) and its target, the SCN, the brain's circadian pacemaker (1). Nor are rods and cones necessary for the pupillary light reflex, mediated by the retinal projection to the pretectal region of the brainstem (2). At present, the best candidate for a photopigment is an opsin-like protein † To whom correspondence should be addressed. kwyau@mail.jhmi.edu. * These authors contributed equally to this work. called melanopsin, which is expressed by a subset of mouse and human RGCs (11). The accompanying report (12) shows that RGCs projecting to the SCN are directly sensitive to light. Thus, melanopsin may be the photopigment responsible for this intrinsic photosensitivity, and it may also trigger other non-image-forming visual functions. NIH Public AccessWe cloned the full-length cDNA for rat melanopsin (13), on the basis of homology to mouse melanopsin (11). The predicted amino...
A rare type of ganglion cell in mammalian retina is directly photosensitive. These novel retinal photoreceptors express the photopigment melanopsin. They send axons directly to the suprachiasmatic nucleus (SCN), intergeniculate leaflet (IGL), and olivary pretectal nucleus (OPN), thereby contributing to photic synchronization of circadian rhythms and the pupillary light reflex. Here, we sought to characterize more fully the projections of these cells to the brain. By targeting tau-lacZ to the melanopsin gene locus in mice, ganglion cells that would normally express melanopsin were induced to express, instead, the marker enzyme beta-galactosidase. Their axons were visualized by X-gal histochemistry or anti-beta-galactosidase immunofluorescence. Established targets were confirmed, including the SCN, IGL, OPN, ventral division of the lateral geniculate nucleus (LGv), and preoptic area, but the overall projections were more widespread than previously recognized. Targets included the lateral nucleus, peri-supraoptic nucleus, and subparaventricular zone of the hypothalamus, medial amygdala, margin of the lateral habenula, posterior limitans nucleus, superior colliculus, and periaqueductal gray. There were also weak projections to the margins of the dorsal lateral geniculate nucleus. Co-staining with the cholera toxin B subunit to label all retinal afferents showed that melanopsin ganglion cells provide most of the retinal input to the SCN, IGL, and lateral habenula and much of that to the OPN, but that other ganglion cells do contribute at least some retinal input to these targets. Staining patterns after monocular enucleation revealed that the projections of these cells are overwhelmingly crossed except for the projection to the SCN, which is bilaterally symmetrical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.