Regulation of the activity of the pyruvate dehydrogenase complex in skeletal muscle plays an important role in fuel selection and glucose homeostasis. Activation of the complex promotes disposal of glucose, whereas inactivation conserves substrates for hepatic glucose production. Starvation and diabetes induce a stable increase in pyruvate dehydrogenase kinase activity in skeletal muscle mitochondria that promotes phosphorylation and inactivation of the complex. The present study shows that these metabolic conditions induce a large increase in the expression of PDK4, one of four pyruvate dehydrogenase kinase isoenzymes expressed in mammalian tissues, in the mitochondria of gastrocnemius muscle. Refeeding starved rats and insulin treatment of diabetic rats decreased pyruvate dehydrogenase kinase activity and also reversed the increase in PDK4 protein in gastrocnemius muscle mitochondria. Starvation and diabetes also increased the abundance of PDK4 mRNA in gastrocnemius muscle, and refeeding and insulin treatment again reversed the effects of starvation and diabetes. These findings suggest that an increase in amount of this enzyme contributes to hyperphosphorylation and inactivation of the pyruvate dehydrogenase complex in these metabolic conditions. It was further found that feeding rats WY-14,643, a selective agonist for the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), also induced large increases in pyruvate dehydrogenase kinase activity, PDK4 protein, and PDK4 mRNA in gastrocnemius muscle. Since long-chain fatty acids activate PPAR-alpha endogenously, increased levels of these compounds in starvation and diabetes may signal increased expression of PDK4 in skeletal muscle.
) J. Biol. Chem. 269, 29720 -29724). The present study was undertaken to further explore the diversity of the pyruvate dehydrogenase kinase gene family. Here we report the deduced amino acid sequences of three isoenzymic forms of PDK found in humans. In terms of their primary structures, two isoenzymes identified in humans correspond to rat PDK1 and PDK2, whereas a third gene (PDK3) encodes for a new isoenzyme that shares 68% and 67% of amino acid identities with PDK1 and PDK2, respectively. PDK3 cDNA expressed in Escherichia coli directs the synthesis of a polypeptide with a molecular mass of approximately 45,000 Da that possesses catalytic activity toward kinase-depleted pyruvate dehydrogenase. PDK3 appears to have the highest specific activity among the three isoenzymes tested as recombinant proteins.Tissue distribution of all three isoenzymes of human PDK was characterized by Northern blot analysis. The highest amount of PDK2 mRNA was found in heart and skeletal muscle, the lowest amount in placenta and lung. Brain, kidney, pancreas, and liver expressed an intermediate amount of PDK2 (brain > kidney ؍ pancreas > liver). The tissue distribution of PDK1 mRNA differs markedly from PDK2. The message for PDK1 was expressed predominantly in heart with only modest levels of expression in other tissues (skeletal muscle > liver > pancreas > brain > placenta ؍ lung > kidney). In contrast to PDK1 and PDK2, which are expressed in all tissues tested, the message for PDK3 was found almost exclusively in heart and skeletal muscle, indicating that PDK3 may serve specialized functions characteristic of muscle tissues. In all tissues tested thus far, the level of expression of PDK2 mRNA was essentially higher than that of PDK1 and PDK3, consistent with the idea that PDK2 is a major isoenzyme responsible for regulation of pyruvate dehydrogenase in human tissues.
The enzymic activity of the mammalian pyruvate dehydrogenase complex is regulated by the phosphorylation of three serine residues (sites 1, 2 and 3) located on the E1 component of the complex. Here we report that the four isoenzymes of protein kinase responsible for the phosphorylation and inactivation of pyruvate dehydrogenase (PDK1, PDK2, PDK3 and PDK4) differ in their abilities to phosphorylate the enzyme. PDK1 can phosphorylate all three sites, whereas PDK2, PDK3 and PDK4 each phosphorylate only site 1 and site 2. Although PDK2 phosphorylates site 1 and 2, it incorporates less phosphate in site 2 than PDK3 or PDK4. As a result, the amount of phosphate incorporated by each isoenzyme decreases in the order PDK1>PDK3>or=PDK4>PDK2. Significantly, binding of the coenzyme thiamin pyrophosphate to pyruvate dehydrogenase alters the rates and stoichiometries of phosphorylation of the individual sites. First, the rate of phosphorylation of site 1 by all isoenzymes of kinase is decreased. Secondly, thiamin pyrophosphate markedly decreases the amount of phosphate that PDK1 incorporates in sites 2 and 3 and that PDK2 incorporates in site 2. In contrast, the coenzyme does not significantly affect the total amount of phosphate incorporated in site 2 by PDK3 and PDK4, but instead decreases the rate of phosphorylation of this site. Furthermore, pyruvate dehydrogenase complex phosphorylated by the individual isoenzymes of kinase is reactivated at different rates by pyruvate dehydrogenase phosphatase. Both isoenzymes of phosphatase (PDP1 and PDP2) readily reactivate the complex phosphorylated by PDK2. When pyruvate dehydrogenase is phosphorylated by other isoenzymes, the rates of reactivation decrease in the order PDK4>or=PDK3>PDK1. Taken together, results reported here strongly suggest that the major determinants of the activity state of pyruvate dehydrogenase in mammalian tissues include the phosphorylation site specificity of isoenzymes of kinase in addition to the absolute amounts of kinase and phosphatase protein expressed in mitochondria.
Different isoenzymes of pyruvate dehydrogenase kinase (PDK) inhibit the mitochondrial pyruvate dehydrogenase complex by phosphorylation of the E1alpha subunit, thus contributing to the regulation of glucose metabolism. By positional cloning in the 7q21.3-q22.1 region linked with insulin resistance and non-insulin-dependent diabetes mellitus in the Pima Indians, we identified a gene encoding an additional human PDK isoform, as evidenced by its amino acid sequence identity (>65%) with other mammalian PDKs, and confirmed by biochemical analyses of the recombinant protein. We performed detailed comparative analyses of the gene, termed PDK4, in insulin-resistant and insulin-sensitive Pima Indians, and detected five DNA variants with comparable frequencies in both subject groups. Using quantitative reverse transcription polymerase chain reaction, we found that the variants identified in the promoter and 5'-untranslated region did not correlate with differences in mRNA level in skeletal muscle and adipose tissue. We conclude that alterations in PDK4 are unlikely to be the molecular basis underlying the observed linkage at 7q21.3-q22.1 in the Pima Indians. Information about the genomic organization and promoter sequences of PDK4 will be useful in studies of other members of this family of mitochondrial protein kinases that are important for the regulation of glucose metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.