An RNA virus, designated hepatitis G virus (HGV), was identified from the plasma of a patient with chronic hepatitis. Extension from an immunoreactive complementary DNA clone yielded the entire genome (9392 nucleotides) encoding a polyprotein of 2873 amino acids. The virus is closely related to GB virus C (GBV-C) and distantly related to hepatitis C virus, GBV-A, and GBV-B. HGV was associated with acute and chronic hepatitis. Persistent viremia was detected for up to 9 years in patients with hepatitis. The virus is transfusion-transmissible. It has a global distribution and is present within the volunteer blood donor population in the United States.
We have recently described the cloning of a portion of the hepatitis E virus (HEV) and confirmed its etiologic association with enterically transmitted (waterborne, epidemic) non-A, non-B hepatitis. The virus consists of a single-stranded, positive-sense RNA genome of approximately 7.5 kb, with a polyadenylated 3' end. We now report on the cloning and nucleotide sequencing of an overlapping, contiguous set of cDNA clones representing the entire genome of the HEV Burma strain [HEV(B)]. The largest open reading frame extends approximately 5 kb from the 5' end and contains the RNA-directed RNA polymerase and nucleoside triphosphate binding motifs. The second major open reading frame (ORF2) begins 37 bp downstream of the first and extends approximately 2 kb to the termination codon present 65 bp from the 3' terminal stretch of poly(A) residues. ORF2 contains a consensus signal peptide sequence at its amino terminus and a capsid-like region with a high content of basic amino acids similar to that seen with other virus capsid proteins. A third open reading frame partially overlaps the first and second and encompasses only 369 bp. In addition to the 7.5-kb full-length genomic transcript, two subgenomic polyadenylated messages of approximately 3.7 and 2.0 kb were detected in infected liver using a probe from the 3' third of the genome. The genomic organization of the virus is consistent with the 5' end encoding nonstructural and the 3' end encoding the viral structural gene(s). The expression strategy of the virus involves the use of three different open reading frames and at least three different transcripts. HEV was previously determined to be a nonenveloped particle with a diameter of 27-34 nm. These findings on the genetic organization and expression strategy of HEV suggest that it is the prototype human pathogen for a new class of RNA virus or perhaps a separate genus within the Caliciviridae family. o tsst Academic PWSS, IIX.
Major epidemic outbreaks of viral hepatitis in underdeveloped countries result from a type of non-A, non-B hepatitis distinct from the parenterally transmitted form. The viral agent responsible for this form of epidemic, or enterically transmitted non-A, non-B hepatitis (ET-NANBH), has been serially transmitted in cynomolgus macaques (cynos) and has resulted in typical elevation in liver enzymes and the detection of characteristic virus-like particles (VLPs) in both feces and bile. Infectious bile was used for the construction of recombinant complementary DNA libraries. One clone, ET1.1, was exogenous to uninfected human and cyno genomic liver DNA, as well as to genomic DNA from infected cyno liver. ET1.1 did however, hybridize to an approximately 7.6-kilobase RNA species present only in infected cyno liver. The translated nucleic acid sequence of a portion of ET1.1 had a consensus amino acid motif consistent with an RNA-directed RNA polymerase; this enzyme is present in all positive strand RNA viruses. Furthermore, ET1.1 specifically identified similar sequences in complementary DNA prepared from infected human fecal samples collected from five geographically distinct ET-NANBH outbreaks. Therefore, ET1.1 represents a portion of the genome of the principal viral agent, to be named hepatitis E virus, which is responsible for epidemic outbreaks of ET-NANBH.
Objective. To study the contribution of interferon-␣ (IFN␣) and IFN␥ to the IFN gene expression signature that has been observed in microarray screens of peripheral blood mononuclear cells (PBMCs) from patients with systemic lupus erythematosus (SLE).Methods. Quantitative real-time polymerase chain reaction analysis of healthy control PBMCs was used to determine the relative induction of a panel of IFN-inducible genes (IFIGs) by IFN␣ and IFN␥. PBMCs from 77 SLE patients were compared with those from 22 disease controls and 28 healthy donors for expression of IFIGs.Results. Expression of IFN␣-inducible genes was significantly higher in SLE PBMCs than in those from disease controls or healthy donors. The level of expression of all IFIGs in PBMCs from SLE patients with IFN␣ pathway activation correlated highly with the inherent responsiveness of those genes to IFN␣, suggesting coordinate activation of that cytokine pathway. Expression of genes preferentially induced by IFN␥ was not significantly increased in SLE PBMCs compared with control PBMCs. IFN␣-regulated gene-inducing activity was detected in some SLE plasma samples.Conclusion. The coordinate activation of IFN␣-induced genes is a characteristic of PBMCs from many SLE patients, supporting the hypothesis that IFN␣ is the predominant stimulus for IFIG expression in lupus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.