Summary
Severe disease of SARS-CoV-2 is characterized by vigorous inflammatory responses in the lung, often with a sudden onset after 5–7 days of stable disease. Efforts to modulate this hyperinflammation and the associated acute respiratory distress syndrome rely on the unraveling of the immune cell interactions and cytokines that drive such responses. Given that every patient is captured at different stages of infection, longitudinal monitoring of the immune response is critical and systems-level analyses are required to capture cellular interactions. Here, we report on a systems-level blood immunomonitoring study of 37 adult patients diagnosed with COVID-19 and followed with up to 14 blood samples from acute to recovery phases of the disease. We describe an IFNγ-eosinophil axis activated before lung hyperinflammation and changes in cell-cell co-regulation during different stages of the disease. We also map an immune trajectory during recovery that is shared among patients with severe COVID-19.
Severe COVID-19 is characterized by extensive pulmonary complications, to which host immune responses are believed to play a role. As the major arm of innate immunity, neutrophils are one of the first cells recruited to the site of infection where their excessive activation can contribute to lung pathology. Low-density granulocytes (LDGs) are circulating neutrophils, whose numbers increase in some autoimmune diseases and cancer, but are poorly characterized in acute viral infections. Using flow cytometry, we detected a significant increase of LDGs in the blood of acute COVID-19 patients, compared to healthy controls. Based on their surface marker expression, COVID-19-related LDGs exhibit four different populations, which display distinctive stages of granulocytic development and most likely reflect emergency myelopoiesis. Moreover, COVID-19 LDGs show a link with an elevated recruitment and activation of neutrophils. Functional assays demonstrated the immunosuppressive capacities of these cells, which might contribute to impaired lymphocyte responses during acute disease. Taken together, our data confirms a significant granulocyte activation during COVID-19 and suggests that granulocytes of lower density play a role in disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.