Blood-brain barrier (BBB) breakdown and immune cell infiltration into the central nervous system (CNS) are early hallmarks of multiple sclerosis (MS). The mechanisms leading to BBB dysfunction are incompletely understood and generally thought to be a consequence of neuroinflammation. Here, we have challenged this view and asked if intrinsic alterations in the BBB of MS patients contribute to MS pathogenesis. To this end, we made use of human induced pluripotent stem cells (hiPSCs) derived from healthy controls (HC) and MS patients and differentiated them into brain microvascular endothelial cell (BMEC)-like cells as in vitro model of the BBB. MS-derived BMEC-like cells showed impaired junctional integrity, barrier properties and efflux pump activity when compared to HC. Also, MS-derived BMEC-like cells displayed an inflammatory phenotype with increased adhesion molecule expression and immune cell interactions. Activation of Wnt/β-catenin signaling in MS-derived endothelial progenitor cells enhanced barrier characteristics and reduced the inflammatory phenotype. Our study provides evidence for an intrinsic impairment of BBB function in MS patients that can be modeled in vitro. Human iPSC-derived BMEC-like cells are thus suitable to explore the molecular underpinnings of BBB dysfunction in MS and will assist in the identification of potential novel therapeutic targets for BBB stabilization.
Glutamate dehydrogenase (GDH) is important in normal glucose homeostasis. Mutations of GDH result in hyperinsulinism/hyperammonemia syndrome. Using PCR/single-strand conformation polymorphism analysis of the gene encoding GDH in 12 Japanese patients with persistent hyperinsulinemic hypoglycemia of infancy (PHHI), we found a mutation (Y266C) in one PHHI patient. This mutation was not found in any of the control or type 2 diabetic subjects. The activity of the mutant GDH (GDH266C), expressed in COS-7 cells, was constitutively elevated, and allosteric regulations by ADP and GTP were severely impaired. The effect of the unregulated increase in GDH activity on insulin secretion was examined by overexpressing GDH266C in an insulinoma cell line, MIN6. Although glutamine alone did not stimulate insulin secretion from control MIN6-lacZ, it remarkably stimulated insulin secretion from MIN6-GDH266C. This finding suggests that constitutively activated GDH enhances oxidation of glutamate, which is intracellularly converted from glutamine to ␣-ketoglutarate, a tricarboxylic acid cycle substrate, which thereby stimulates insulin secretion. Interestingly, insulin secretion is also exaggerated significantly at low glucose concentrations (2 and 5 mmol/l) but not at higher glucose concentrations (8 -25 mmol/l). Our results directly illustrate the importance of GDH in the regulation of insulin secretion from pancreatic -cells.
We report on a total of 4 individuals in 2 families with Kabuki make-up syndrome. In family 1, the proposita, a 2 4/12-year-old girl and her mother had typical Kabuki make-up syndrome. The proposita also had early breast development. In family 2, the proposita, a 6-month-old girl and her mother had typical Kabuki make-up syndrome. The proposita died at age 6 months. Analysis of 2 families indicates that the condition is an autosomal dominant inheritance with variable expressivity.
Background and ObjectivesTo evaluate the pathophysiology of neuromyelitis optica spectrum disorder (NMOSD) and the therapeutic mechanism and levels of interleukin-6 (IL-6) blockade (satralizumab), especially with respect to blood-brain barrier (BBB) disruption with the new in vitro and ex vivo human BBB models and in vivo model.MethodsWe constructed new static in vitro and flow-based ex vivo models for evaluating continued barrier function, leukocyte transmigration, and intracerebral transferability of neuromyelitis optica-immunoglobulin G (NMO-IgG) and satralizumab across the BBB using the newly established triple coculture system that are specialized to closely mimic endothelial cell contact of pericytes and endfeet of astrocytes. In the in vivo study, we assessed the effects of an anti–IL-6 receptor antibody for mice (MR16-1) on in vivo BBB disruption in mice with experimental autoimmune encephalomyelitis in which IL-6 concentration in the spinal cord dramatically increases.ResultsIn vitro and ex vivo experiments demonstrated that NMO-IgG increased intracerebral transferability of satralizumab and NMO-IgG and that satralizumab suppressed the NMO-IgG–induced transmigration of T cells and barrier dysfunction. In the in vivo study, the blockade of IL-6 signaling suppressed the migration of T cells into the spinal cord and prevented the increased BBB permeability.DiscussionThese results suggest that (1) our triple-cultured in vitro and in ex vivo BBB models are ideal for evaluating barrier function, leukocyte transmigration, and intracerebral transferability; (2) NMO-IgG increased the intracerebral transferability of NMO-IgG via decreasing barrier function and induced secretion of IL-6 from astrocytes causing more dysfunction of the barrier and disrupting controlled cellular infiltration; and (3) satralizumab, which can pass through the BBB in the presence of NMO-IgG, suppresses the BBB dysfunction and the infiltration of inflammatory cells, leading to prevention of onset of NMOSD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.