This study evaluates the tropical intraseasonal variability, especially the fidelity of The results show that current state-of-the-art GCMs still have significant problems and display a wide range of skill in simulating the tropical intraseasonal variability. The total intraseasonal (2-128 day) variance of precipitation is too weak in most of the models. About half of the models have signals of convectively coupled equatorial waves, with Kelvin and MRG-EIG waves especially prominent. However, the variances are generally too weak for all wave modes except the EIG wave, and the phase speeds are generally too fast, being scaled to excessively deep equivalent depths. An interesting result is that this scaling is consistent within a given model across modes, in that both the symmetric and antisymmetric modes scale similarly to a certain equivalent depth.Excessively deep equivalent depths suggest that these models may not have a large enough reduction in their "effective static stability" due to diabatic heating. 3The MJO variance approaches the observed value in only two of the 14 models, but is less than half of the observed value in the other 12 models. The ratio between the eastward MJO variance and the variance of its westward counterpart is too small in most of the models, which is consistent with the lack of highly coherent eastward propagation of the MJO in many models. Moreover, the MJO variance in 13 of the 14 models does not come from a pronounced spectral peak, but usually is associated with an overreddened spectrum, which in turn is associated with a too strong persistence of equatorial precipitation. The two models that arguably do best at simulating the MJO are the only ones having convective closures/triggers linked in some way to moisture convergence.4
Two univariate indices of the Madden–Julian oscillation (MJO) based on outgoing longwave radiation (OLR) are developed to track the convective component of the MJO while taking into account the seasonal cycle. These are compared with the all-season Real-time Multivariate MJO (RMM) index of Wheeler and Hendon derived from a multivariate EOF of circulation and OLR. The gross features of the OLR and circulation of composite MJOs are similar regardless of the index, although RMM is characterized by stronger circulation. Diversity in the amplitude and phase of individual MJO events between the indices is much more evident; this is demonstrated using examples from the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign and the Year of Tropical Convection (YOTC) virtual campaign. The use of different indices can lead to quite disparate conclusions concerning MJO timing and strength, and even as to whether or not an MJO has occurred. A disadvantage of using daily OLR as an EOF basis is that it is a much noisier field than the large-scale circulation, and filtering is necessary to obtain stable results through the annual cycle. While a drawback of filtering is that it cannot be done in real time, a reasonable approximation to the original fully filtered index can be obtained by following an endpoint smoothing method. When the convective signal is of primary interest, the authors advocate the use of satellite-based metrics for retrospective analysis of the MJO for individual cases, as well as for the analysis of model skill in initiating and evolving the MJO.
The ability of eight climate models to simulate the Madden-Julian oscillation (MJO) is examined using diagnostics developed by the U.S. Climate Variability and Predictability (CLIVAR) MJO Working Group. Although the MJO signal has been extracted throughout the annual cycle, this study focuses on the boreal winter (November-April) behavior. Initially, maps of the mean state and variance and equatorial space-time spectra of 850-hPa zonal wind and precipitation are compared with observations. Models best represent the intraseasonal space-time spectral peak in the zonal wind compared to that of precipitation. Using the phasespace representation of the multivariate principal components (PCs), the life cycle properties of the simulated MJOs are extracted, including the ability to represent how the MJO evolves from a given subphase and the associated decay time scales. On average, the MJO decay (e-folding) time scale for all models is shorter (;20-29 days) than observations (;31 days). All models are able to produce a leading pair of multivariate principal components that represents eastward propagation of intraseasonal wind and precipitation anomalies, although the fraction of the variance is smaller than observed for all models. In some cases, the dominant time scale of these PCs is outside of the 30-80-day band.Several key variables associated with the model's MJO are investigated, including the surface latent heat flux, boundary layer (925 hPa) moisture convergence, and the vertical structure of moisture. Low-level moisture convergence ahead (east) of convection is associated with eastward propagation in most of the models. A few models are also able to simulate the gradual moistening of the lower troposphere that precedes observed MJO convection, as well as the observed geographical difference in the vertical structure of moisture associated with the MJO. The dependence of rainfall on lower tropospheric relative humidity and the fraction of rainfall that is stratiform are also discussed, including implications these diagnostics have for MJO simulation. Based on having the most realistic intraseasonal multivariate empirical orthogonal functions, principal component power spectra, equatorial eastward propagating outgoing longwave radiation (OLR), latent heat flux, low-level moisture convergence signals, and vertical structure of moisture over the Eastern Hemisphere, the superparameterized Community Atmosphere Model (SPCAM) and the ECHAM4/ Ocean Isopycnal Model (OPYC) show the best skill at representing the MJO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.