More than 500 compounds chosen to represent kinase inhibitor space have been screened against a panel of over 200 protein kinases. Significant results include the identification of hits against new kinases including PIM1 and MPSK1, and the expansion of the inhibition profiles of several literature compounds. A detailed analysis of the data through the use of affinity fingerprints has produced findings with implications for biological target selection, the choice of tool compounds for target validation, and lead discovery and optimization. In a detailed examination of the tyrosine kinases, interesting relationships have been found between targets and compounds. Taken together, these results show how broad cross-profiling can provide important insights to assist kinase drug discovery.
Trinucleotide phosphoramidites representing codons for all 20 amino acids have been prepared and used in automated, solid-phase DNA synthesis. In contrast to an earlier report, we show that these substances can be used to introduce entire codons into oligonucleotides in excess of 98% yield, and are ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis.
There is unmet need for chemical tools to explore the role of the Mediator complex in human pathologies ranging from cancer to cardiovascular disease. Here we determine that CCT251545, a small molecule WNT-pathway inhibitor discovered through cell-based screening, is a potent and selective chemical probe for the human Mediator complex-associated protein kinases CDK8 and CDK19 with >100-fold selectivity over 291 other kinases. X-ray crystallography demonstrates a Type 1 binding mode involving insertion of the CDK8 C-terminus into the ligand binding site. InReprints and permissions information is available online at http://www.nature.com/reprints/index.html.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.