Magmatic rocks and depositional setting of associated volcaniclastic strata along a north‐south traverse spanning the southern Tien Shan and eastern Pamirs of Kyrgyzstan and Tajikistan constrain the tectonics of the Pamirs and Tibet. The northern Pamirs and northwestern Tibet contain the north facing Kunlun suture, the south facing Jinsha suture, and the intervening Carboniferous to Triassic Karakul–Mazar subduction accretion system; the latter is correlated with the Songpan‐Garze–Hoh Xi system of Tibet. The Kunlun arc is a composite early Paleozoic to late Paleozoic‐Triassic arc. Arc formation in the Pamirs is characterized by ∼370–320 Ma volcanism that probably continued until the Triassic. The cryptic Tanymas suture of the southern northern Pamirs is part of the Jinsha suture. A massive ∼≤227 Ma batholith stitches the Karakul–Mazar complex in the Pamirs. There are striking similarities between the Qiangtang block in the Pamirs and Tibet. Like Tibet, the regional structure of the Pamirs is an anticlinorium that includes the Muskol and Sares domes. Like Tibet, the metamorphic rocks in these domes are equivalents to the Karakul–Mazar–Songpan‐Garze system. Granitoids intruding the Qiangtang block yield ∼200–230 Ma ages in the Pamirs and in central Tibet. The stratigraphy of the eastern Pshart area in the Pamirs is similar to the Bangong‐Nujiang suture zone in the Amdo region of eastern central Tibet, but a Triassic ocean basin sequence is preserved in the Pamirs. Arc‐type granitoids that intruded into the eastern Pshart oceanic‐basin–arc sequence (∼190–160 Ma) and granitoids that cut the southern Qiangtang block (∼170–160 Ma) constitute the Rushan‐Pshart arc. Cretaceous plutons that intruded the central and southern Pamirs record a long‐lasting magmatic history. Their zircons and those from late Miocene xenoliths show that the most distinct magmatic events were Cambro‐Ordovician (∼410–575 Ma), Triassic (∼210–250 Ma; likely due to subduction along the Jinsha suture), Middle Jurassic (∼147–195 Ma; subduction along Rushan‐Pshart suture), and mainly Cretaceous. Middle and Late Cretaceous magmatism may reflect arc activity in Asia prior to the accretion of the Karakoram block and flat‐slab subduction along the Shyok suture north of the Kohistan‐Ladakh arc, respectively. Before India and Asia collided, the Pamir region from the Indus‐Yarlung to the Jinsha suture was an Andean‐style plate margin. Our analysis suggests a relatively simple crustal structure for the Pamirs and Tibet. From the Kunlun arc in the north to the southern Qiangtang block in the south the Pamirs and Tibet likely have a dominantly sedimentary crust, characterized by Karakul–Mazar–Songpan‐Garze accretionary wedge rocks. The crust south of the southern Qiangtang block is likely of granodioritic composition, reflecting long‐lived subduction, arc formation, and Cretaceous‐Cenozoic underthrusting.
The American margins of the Caribbean comprise basins and accreted terranes recording a polyphase tectonic history. Plate kinematic models and reconstructions back to the Jurassic show that Mesozoic separation of the Americas produced passive margins that were overridden diachronously from west to east by allochthonous Caribbean plate-related arc and oceanic complexes. P-T-t and structural data, sedimentary provenance, and basin-subsidence studies constrain this history. Caribbean lithosphere is Pacifi c-derived and was engulfed between the Americas during their westward drift as the Atlantic Ocean opened. This began ca. 120 Ma with development of a west-dipping Benioff zone between Central America and the northern Andes, now marked by the Guatemalan and Cuban sutures in North America and by the northern Colombian and Venezuelan "sutures" of South America, persisting today as the Lesser Antilles subduction zone. Most Caribbean high-pressure metamorphic complexes originated at this subduction zone, which probably formed by arc-polarity reversal at an earlier west-facing Inter-American Arc and was probably caused by westward acceleration of the Americas. The mainly 90 Ma Caribbean basalts were extruded onto preexisting Caribbean crust ~30 m.y. later and are not causally linked to the reversal. The Great Caribbean Arc originated at this trench and evolved up to the present, acquiring the shape of the preexisting ProtoCaribbean Seaway. The uplift and cooling history of arc and forearc terranes, and history of basin opening and subsidence, can be tied to stages of Caribbean plate motion in a coherent, internally consistent regional model that provides the basis for further studies.
Cenozoic gneiss domes comprise one third of the surface exposure of the Pamir and provide a window into the deep crustal processes of the India‐Asia collision. The largest of these are the doubly vergent, composite Shakhdara‐Alichur domes of the southwestern Pamir, Tajikistan, and Afghanistan; they are separated by a low‐strain horst. Top‐to‐SSE, noncoaxial pervasive flow over the up to 4 km thick South Pamir shear zone exhumed crust from 30–40 km depth in the ~250 × 80 km Shakhdara dome; the top‐to‐NNE Alichur shear zone exposed upper crustal rocks in the ~125 × 25 km Alichur dome. The Gunt shear zone bounds the Shakhdara dome in the north and records alternations of normal shear and dextral transpression; it contributed little to bulk exhumation. Footwall exhumation along two low‐angle, normal‐sense detachments resulted in up to 90 km syn‐orogenic ~N‐S extension. Extension in the southwestern Pamir opposes shortening in a fold‐thrust belt north of the domes and in particular in the Tajik depression, where an evaporitic décollement facilitated upper crustal shortening. Gravitational collapse of the Pamir‐plateau margin drove core‐complex formation in the southwestern Pamir and shortening of the weak foreland adjacent to the plateau. Overall, this geometry defines a “vertical extrusion” scenario, comprising frontal and basal underthrusting and thickening, and hanging gravitationally driven normal shear. In contrast to the Himalayan vertical extrusion scenario, erosion in the Pamir was minor, preserving most of the extruded deep crust, including the top of the South Pamir shear zone at peak elevations throughout the dome.
New structural, geochronological, and petrological data highlight which crustal sections of the North American–Caribbean Plate boundary in Guatemala and Honduras accommodated the large-scale sinistral offset. We develop the chronological and kinematic framework for these interactions and test for Palaeozoic to Recent geological correlations among the Maya Block, the Chortís Block, and the terranes of southern Mexico and the northern Caribbean. Our principal findings relate to how the North American–Caribbean Plate boundary partitioned deformation; whereas the southern Maya Block and the southern Chortís Block record the Late Cretaceous–Early Cenozoic collision and eastward sinistral translation of the Greater Antilles arc, the northern Chortís Block preserves evidence for northward stepping of the plate boundary with the translation of this block to its present position since the Late Eocene. Collision and translation are recorded in the ophiolite and subduction–accretion complex (North El Tambor complex), the continental margin (Rabinal and Chuacús complexes), and the Laramide foreland fold–thrust belt of the Maya Block as well as the overriding Greater Antilles arc complex. The Las Ovejas complex of the northern Chortís Block contains a significant part of the history of the eastward migration of the Chortís Block; it constitutes the southern part of the arc that facilitated the breakaway of the Chortís Block from the Xolapa complex of southern Mexico. While the Late Cretaceous collision is spectacularly sinistral transpressional, the Eocene–Recent translation of the Chortís Block is by sinistral wrenching with transtensional and transpressional episodes. Our reconstruction of the Late Mesozoic–Cenozoic evolution of the North American–Caribbean Plate boundary identified Proterozoic to Mesozoic connections among the southern Maya Block, the Chortís Block, and the terranes of southern Mexico: (i) in the Early–Middle Palaeozoic, the Acatlán complex of the southern Mexican Mixteca terrane, the Rabinal complex of the southern Maya Block, the Chuacús complex, and the Chortís Block were part of the Taconic–Acadian orogen along the northern margin of South America; (ii) after final amalgamation of Pangaea, an arc developed along its western margin, causing magmatism and regional amphibolite–facies metamorphism in southern Mexico, the Maya Block (including Rabinal complex), the Chuacús complex and the Chortís Block. The separation of North and South America also rifted the Chortís Block from southern Mexico. Rifting ultimately resulted in the formation of the Late Jurassic–Early Cretaceous oceanic crust of the South El Tambor complex; rifting and spreading terminated before the Hauterivian (c. 135 Ma). Remnants of the southwestern Mexican Guerrero complex, which also rifted from southern Mexico, remain in the Chortís Block (Sanarate complex); these complexes share Jurassic metamorphism. The South El Tambor subduction–accretion complex was emplaced onto the Chortís Block probably in the late Early Cretaceous and the Chortís Block collided with southern Mexico. Related arc magmatism and high-T/low-P metamorphism (Taxco–Viejo–Xolapa arc) of the Mixteca terrane spans all of southern Mexico. The Chortís Block shows continuous Early Cretaceous–Recent arc magmatism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.