Conformation-sensitive antibodies against myelin oligodendrocyte glycoprotein (MOG) are detectable in patients with optic neuritis, myelitis, opticomyelitis, acute or multiphasic disseminated encephalomyelitis (ADEM/MDEM) and brainstem/cerebral cortical encephalitis, but are rarely detected in patients with prototypic multiple sclerosis. So far, there has been no systematic study on the pathological relationship between demyelinating lesions and cellular/humoral immunity in MOG antibody-associated disease. Furthermore, it is unclear whether the pathomechanisms of MOG antibody-mediated demyelination are similar to the demyelination patterns of multiple sclerosis, neuromyelitis optica spectrum disorders (NMOSD) with AQP4 antibody, or ADEM. In this study, we immunohistochemically analysed biopsied brain tissues from 11 patients with MOG antibody-associated disease and other inflammatory demyelinating diseases. Patient median onset age was 29 years (range 9–64), and the median interval from attack to biopsy was 1 month (range 0.5–96). The clinical diagnoses were ADEM (n = 2), MDEM (n = 1), multiple brain lesions without encephalopathy (n = 3), leukoencephalopathy (n = 3) and cortical encephalitis (n = 2). All these cases had multiple/extensive lesions on MRI and were oligoclonal IgG band-negative. Most demyelinating lesions in 10 of 11 cases showed a perivenous demyelinating pattern previously reported in ADEM (153/167 lesions) and a fusion pattern (11/167 lesions) mainly in the cortico-medullary junctions and white matter, and only three lesions in two cases showed confluent demyelinated plaques. In addition, 60 of 167 demyelinating lesions (mainly in the early phase) showed MOG-dominant myelin loss, but relatively preserved oligodendrocytes, which were distinct from those of AQP4 antibody-positive NMOSD exhibiting myelin-associated glycoprotein-dominant oligodendrogliopathy. In MOG antibody-associated diseases, MOG-laden macrophages were found in the perivascular spaces and demyelinating lesions, and infiltrated cells were abundant surrounding multiple blood vessels in and around the demyelinating lesions, mainly consisting of macrophages (CD68; 1814 ± 1188 cells/mm2), B cells (CD20; 468 ± 817 cells/mm2), and T cells (CD3; 2286 ± 1951 cells/mm2), with CD4-dominance (CD4+ versus CD8+; 1281 ± 1196 cells/mm2 versus 851 ± 762 cells/mm2, P < 0.01). Humoral immunity, evidenced by perivascular deposits of activated complements and immunoglobulins, was occasionally observed in some MOG antibody-associated demyelinating lesions, and the frequency was much lower than that in AQP4 antibody-positive NMOSD. Subpial lesions with perivenous demyelination were observed in both ADEM and cortical encephalitis. Our study suggests that ADEM-like perivenous inflammatory demyelination with MOG-dominant myelin loss is a characteristic finding of MOG antibody-associated disease regardless of whether the diagnostic criteria of ADEM are met. These pathological features are clearly different from those of multiple sclerosis and AQP4 antibody-positive NMOSD, suggesting an independent autoimmune demyelinating disease entity.
This study investigates the relation between the serological status of NMO (neuromyelitis optica)-IgG and the clinical and MRI features in Japanese patients with multiple sclerosis. Serum NMO-IgG was tested in 35 Japanese patients diagnosed with multiple sclerosis, including 19 with the optic-spinal form of multiple sclerosis (OSMS), three with the spinal form of multiple sclerosis (SMS), and 13 with the conventional form of multiple sclerosis (CMS), which affects the brain. NMO-IgG was detected in 14 patients, 12 with OSMS and 2 with CMS. In these patients, longitudinally extensive (> 3 vertebral segments) spinal cord lesions (93% v 57%) and permanent, complete blindness (no perception of light) in at least one eye (50% v 0%) were the noticeable features as compared with NMO-IgG-negative OSMS. The two patients having CMS with NMO-IgG had unusual brain lesions, but in other respects had features suggesting OSMS. NMO-IgG was detected in more than half the number of patients with OSMS and in some patients with CMS. This newly discovered serum autoantibody was markedly associated with longitudinally extensive spinal cord lesions and with complete blindness, suggesting severe optic-spinal disease.
Neuromyelitis optica (NMO) is characterized by severe optic neuritis and transverse myelitis. The relationship of NMO to multiple sclerosis (MS) has long been debated, but NMO has been classified as a demyelinating disease. Since the discovery of an NMO‐specific autoantibody to aquaporin 4 (AQP4), a dominant water channel in the central nervous system densely expressed on end‐feet of astrocytes, the clinical, magnetic resonance imaging and laboratory findings to distinguish NMO from MS have been clarified. Furthermore, pathological studies showed an extensive loss of immunoreactivities to astrocytic proteins, AQP4 and glial fibrillary acidic protein (GFAP), and perivascular deposition of immunoglobulins and activated complements with a relative preservation of the staining of myelin basic protein (MBP) in acute NMO lesions, but not in MS. In support of these pathological findings, the GFAP levels in the cerebrospinal fluid (CSF) during acute exacerbation of NMO are remarkably elevated compared with MBP and neurofilament, whereas the CSF‐GFAP in MS is not different from those in controls. Additionally, recent experimental studies have convincingly shown that AQP4 antibody is pathogenic in causing astorocytic destruction and dysfunction in vitro, ex vivo and in vivo. These findings strongly suggest that damage of astrocytes is far more severe than those of myelin and neurons, and that autoimmune astrocytopathy is the primary pathology in NMO. Based on these accumulated data, we propose that NMO should be classified as an astrocytopathic disease rather than a demyelinating disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.