Oscillator strengths for C 1s, N 1s, and O 1s excitation spectra of gaseous glycine and the dipeptide, glycylglycine, have been derived from inner-shell electron energy-loss spectroscopy recorded under scattering conditions where electric dipole transitions dominate (2.5 keV residual energy, θ ≈ 2°). X-ray absorption spectra of solid glycine, glycyl-glycine, glycyl-glycyl-glycine, and a large protein, fibrinogen, were recorded in a scanning transmission X-ray microscope. The experimental spectra are assigned through interspecies comparisons and by comparison to ab initio computed spectra of various conformations of glycine and glycylglycine. Inner-shell excitation spectral features characteristic of the peptide bond are readily identified by comparison of the spectra of gas-phase glycine and glycyl-glycine. They include a clear broadening and a ∼0.3 eV shift of the C 1s f π* CdO peak and introduction of a new pre-edge feature in the N 1s spectrum. These effects are due to 1s f π* amide transitions introduced with formation of the peptide bond. Similar changes occur in the spectra of the solids. The computational results support the interpretation of the experimental inner-shell spectra and provide insight into electron density distributions in the core excited states. Possible conformational dependence of the inner-shell excitation spectra was explored by computing the spectra of neutral glycine in its four most common conformations, and of glycyl-glycine in planar and two twisted conformations. A strong dependence of the computed C 1s, N 1s, and O 1s spectra of glycylglycine on the conformation about the amide linkage was confirmed by additional ab initio calculations of the conformational dependence of the spectra of formamide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.