Binding is good, displacing is better. By adding a weakly binding reporter ligand to a mixture of protein and test compounds, NMR screening can identify strongly binding ligands by observing the displacement of the reporter ligand. For example, NMR screening identified, as a reporter ligand, a small fragment, 2‐acetylbenzofuran (1, gray skeleton), which binds to the active site of 3α‐HSD. A molecular model of the complex between 3α‐HSD and 1 is shown.
The beta‐site amyloid precursor protein cleaving enzyme‐1 (BACE‐1) initiates the generation of amyloid‐β (Aβ), and the amyloid cascade leading to amyloid plaque deposition, neurodegeneration, and dementia in Alzheimer's disease (AD). Clinical failures of anti‐Aβ therapies in dementia stages suggest that treatment has to start in the early, asymptomatic disease states. The BACE‐1 inhibitor CNP520 has a selectivity, pharmacodynamics, and distribution profile suitable for AD prevention studies. CNP520 reduced brain and cerebrospinal fluid (CSF) Aβ in rats and dogs, and Aβ plaque deposition in APP‐transgenic mice. Animal toxicology studies of CNP520 demonstrated sufficient safety margins, with no signs of hair depigmentation, retina degeneration, liver toxicity, or cardiovascular effects. In healthy adults ≥ 60 years old, treatment with CNP520 was safe and well tolerated and resulted in robust and dose‐dependent Aβ reduction in the cerebrospinal fluid. Thus, long‐term, pivotal studies with CNP520 have been initiated in the Generation Program.
BACKGROUND AND PURPOSEActivation of the α7 nicotinic ACh receptor (nACh receptor) is considered an attractive target for the treatment of cognitive impairment associated with neurological disorders. Here we describe the novel α7-nACh receptor agonist AQW051 as a promising drug candidate for this indication. EXPERIMENTAL APPROACHAQW051 was functionally characterized in vitro and cognitive effects evaluated in rodent behavioural models. Pharmacokinetics and tolerability were evaluated in three phase I placebo-controlled studies in 180 healthy subjects. KEY RESULTSIn vitro, AQW051 bound with high affinity to α7-nACh receptors and stimulated calcium influx in cells recombinantly expressing the human α7-nACh receptor. In vivo, AQW051 demonstrated good oral bioavailability and rapid penetration into the rodent brain. AQW051 administered over a broad dose range facilitated learning/memory performance in the object recognition and social recognition test in mice and the water maze model in aged rats. Clinically, AQW051 was well tolerated in healthy young and elderly subjects, with an adverse event (AE) profile comparable with placebo. No serious AEs were reported and all AEs were either mild or moderate in severity at single oral doses up to 200 mg and multiple daily doses up to 75 mg. Once-daily oral administration of AQW051 resulted in continuous exposure and a two-to threefold accumulation compared with steady state was achieved by 1 week.
Four linear beta(2)/beta(3)-di- and alpha/beta(3)-tetrapeptides (1-4) were investigated as somatostatin sst(4) receptor agonists on recombinant human and mouse somatostatin receptors. Human somatostatin receptor subtypes 1-5 (sst(1-5)), and mouse somatostatin receptor subtypes 1,3,4 and 5, were characterised using the agonist radioligands [(125)I]LTT-SRIF-28, [(125)I][Tyr(10)]CST(14) and [(125)I]CGP 23996 in stably transfected Chinese hamster lung fibroblast (CCL39) cells. The peptides bound selectively to sst(4) receptors with nanomolar affinity (pK(d)=5.4-7.8). The peptides were investigated on second messenger systems both as agonists, and as antagonists to SRIF-14-mediated effects in CCL39 cells expressing mouse sst(4 )receptors, via measurement of inhibition of forskolin-stimulated adenylate cyclase activity, and stimulation of luciferase expression. The peptides showed full agonism or pronounced partial agonism (40 to 100% relative intrinsic activity) in both inhibition of forskolin-stimulated adenylate cyclase activity (pEC(50)=5.5-6.8), and luciferase expression (pEC(50)=5.5-6.5). The agonist potential was confirmed since antagonism was very difficult to establish. The data show that beta(2)/beta(3)-di- and alpha/beta(3)-tetrapeptide derivatives have agonist potential at recombinant somatostatin sst(4) receptors. Therefore, they may be used to elucidate physiological and biochemical effects mediated by sst(4), and may also have potential as therapeutic agents.
Somatostatin (SRIF, somatotropin release inhibiting factor), discovered for its inhibitory action on growth hormone (GH) secretion from pituitary, is an abundant neuropeptide. Two forms, SRIF14 and SRIF28 exist. Recently, a second family of peptides with very similar sequences and features was described; the cortistatins (CST), CST17 and CST29 which are brain selective. The five cloned SRIF receptors (sst1-5) belong to the G-protein coupled/ heptathelical receptor family. Structural and operational features distinguish two classes of receptors; SRIF1 - sst2/sst3/sst5 (high affinity for octreotide or seglitide) and SRIF2 = sst1/sst4(very low affinitty for the aforementioned ligands). The affinity of SRIF receptors for somatostatins and cortistatins is equally high, and it is not clear whether selective receptors do exist for one or the other of the peptides. Several radiologlands label all SRIF receptors, e.g., [125]LTT-SRIF28' [l25I]CGP23996, [125]Tyr10cortistatin or [125I]Tyr11SRIF14. In contrast, [125I]Tyr3octreotide, [125I]BIM23027, [125I]MK678 or [125I]D-Trp8SRIF14 label predominantly SRIF1 sites, especially sst2 and possibly sst5 receptors. In brain, [125I]Tyr3octreotide binding equates with sst2 receptor mRNA distribution. Native SRIF2receptors can be labeled with [125I]SRIF14 in the presence of high NaCl in brain (sst1) or lung (sst4) tissue. Short cyclic or linear peptide analogs show selectivity for sst2/sst5 (octreotide, lanreotide, BIM 23027), sst1 (CH-275), sst3 (sst3-ODN-8), or sst5 receptors (BIM 23268); although claims for selectivity have not always been confirmed. Beta peptides ith affinity for SRIF receptors are also reported. The general lack of SRIF receptor antagonists is unique for peptide receptors, although CYN 154806 is a selective and potent sst2 antagonist. Nonpeptide ligands are still rare, although a number of molecules have been reported with selectivity and potency for sst1 (L 757,519), sst2 (L 779,976), sst3 (L 796,778), sst4 (NNC 26-9100, L 803,087) or sst1/sst5 receptors (L 817,018). Such molecules are essential to establish the role of SRIF receptors, e.g., sst1 in hypothalamic glutamate currents: sst2 in inhibiting release of GH, glucagon, TSH, gastric acid secretion, pain, seizures and tumor growth, and sst5 in vascular remodeling and inhibition of insulin and GH release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.