Systemic blood pressure is determined, in part, by arterial smooth muscle cells (myocytes). Several Transient Receptor Potential (TRP) channels are proposed to be expressed in arterial myocytes, but it is unclear if these proteins control physiological blood pressure and contribute to hypertension in vivo. We generated the first inducible, smooth muscle-specific knockout mice for a TRP channel, namely for PKD2 (TRPP1), to investigate arterial myocyte and blood pressure regulation by this protein. Using this model, we show that intravascular pressure and α1-adrenoceptors activate PKD2 channels in arterial myocytes of different systemic organs. PKD2 channel activation in arterial myocytes leads to an inward Na+ current, membrane depolarization and vasoconstriction. Inducible, smooth muscle cell-specific PKD2 knockout lowers both physiological blood pressure and hypertension and prevents pathological arterial remodeling during hypertension. Thus, arterial myocyte PKD2 controls systemic blood pressure and targeting this TRP channel reduces high blood pressure.
Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated K(+) (BK) channel α and auxiliary β1 subunits that modulate arterial contractility. In arterial myocytes, β1 subunits are stored within highly mobile rab11A-positive recycling endosomes. In contrast, BKα subunits are primarily plasma membrane-localized. Trafficking pathways for BKα and whether physiological stimuli that regulate arterial contractility alter BKα localization in arterial myocytes are unclear. Here, using biotinylation, immunofluorescence resonance energy transfer (immunoFRET) microscopy, and RNAi-mediated knockdown, we demonstrate that rab4A-positive early endosomes traffic BKα to the plasma membrane in myocytes of resistance-size cerebral arteries. Angiotensin II (ANG II), a vasoconstrictor, reduced both surface and total BKα, an effect blocked by bisindolylmaleimide-II, concanavalin A, and dynasore, protein kinase C (PKC), internalization, and endocytosis inhibitors, respectively. In contrast, ANG II did not reduce BKα mRNA, and sodium nitroprusside, a nitric oxide donor, did not alter surface BKα protein over the same time course. MG132 and bafilomycin A, proteasomal and lysosomal inhibitors, respectively, also inhibited the ANG II-induced reduction in surface and total BKα, resulting in intracellular BKα accumulation. ANG II-mediated BK channel degradation reduced BK currents in isolated myocytes and functional responses to iberiotoxin, a BK channel blocker, and NS1619, a BK activator, in pressurized (60 mmHg) cerebral arteries. These data indicate that rab4A-positive early endosomes traffic BKα to the plasma membrane in arterial myocytes. We also show that ANG II stimulates PKC-dependent BKα internalization and degradation. These data describe a unique mechanism by which ANG II inhibits arterial myocyte BK currents, by reducing surface channel number, to induce vasoconstriction.
[ANO1, also known as transmembrane protein 16A (TMEM16A)] is a Ca 2ϩ -activated Cl Ϫ channel expressed in arterial myocytes that regulates membrane potential and contractility. Signaling mechanisms that control ANO1 activity in arterial myocytes are poorly understood. In cerebral artery myocytes, ANO1 channels are activated by local Ca 2ϩ signals generated by plasma membrane nonselective cation channels, but the molecular identity of these proteins is unclear. Arterial myocytes express several different nonselective cation channels, including multiple members of the transient receptor potential receptor (TRP) family. The goal of this study was to identify localized ion channels that control ANO1 currents in cerebral artery myocytes. Coimmunoprecipitation and immunofluorescence resonance energy transfer microscopy experiments indicate that ANO1 and canonical TRP 6 (TRPC6) channels are present in the same macromolecular complex and localize in close spatial proximity in the myocyte plasma membrane. In contrast, ANO1 is not near TRPC3, TRP melastatin 4, or inositol trisphosphate receptor 1 channels. Hyp9, a selective TRPC6 channel activator, stimulated Cl Ϫ currents in myocytes that were blocked by T16Ainh-A01, an ANO1 inhibitor, ANO1 knockdown using siRNA, and equimolar replacement of intracellular EGTA with BAPTA, a fast Ca 2ϩ chelator that abolishes local Ca 2ϩ signaling. Hyp9 constricted pressurized cerebral arteries, and this response was attenuated by T16Ainh-A01. In contrast, T16Ainh-A01 did not alter depolarization-induced (60 mM K ϩ ) vasoconstriction. , and Cl Ϫ , as well as nonselective cation channels (4,12,14,19). An understanding of the signaling processes that control the activity of these ion channels provides a better understanding of mechanisms that regulate arterial contractility. Anoctamin-1 [ANO1, also known as transmembrane protein 16A (TMEM16A)] is a recently described Ca 2ϩ -activated Cl Ϫ (Cl Ca ) channel expressed in arterial myocytes that regulates membrane potential and contractility (4). Mechanisms that control ANO1 activity in arterial myocytes are poorly understood but important to determine given the functional significance of this protein in the vasculature. ANO1 channel message and protein have been described in the vasculature, including rat cerebral, pulmonary, and carotid arteries, murine portal vein, retinal and skeletal muscle arterioles, and cultured rat pulmonary artery myocytes (7,15,23,30 (6,23,30). ANO1 knockdown reduced Cl Ca current density in rat cerebral and mesenteric arteries and cultured pulmonary artery myocytes (23, 30). T16Ainh-A01, an ANO1 inhibitor, relaxed methoxamine-contracted murine and human blood vessels (8). Selective ANO1 knockdown attenuated intravascular pressure-induced cerebral artery depolarization and vasoconstriction (5). Cell-specific knockout of ANO1 reduced Cl Ca currents in aortic and cerebral arteriole myocytes, agonist-induced vasoconstriction in retinal and skeletal muscle arterioles, and systemic blood pressure and attenuated hypertensio...
Membrane depolarization of smooth muscle cells (myocytes) in the small arteries that regulate regional organ blood flow leads to vasoconstriction. Membrane depolarization also activates large-conductance calcium (Ca2+)–activated potassium (BK) channels, which limits Ca2+ channel activity that promotes vasoconstriction, thus leading to vasodilation. We showed that in human and rat arterial myocytes, membrane depolarization rapidly increased the cell surface abundance of auxiliary BK β1 subunits but not that of the pore-forming BKα channels. Membrane depolarization stimulated voltage-dependent Ca2+ channels, leading to Ca2+ influx and the activation of Rho kinase (ROCK) 1 and 2. ROCK1/2-mediated activation of Rab11A promoted the delivery of β1 subunits to the plasma membrane by Rab11A-positive recycling endosomes. These additional β1 subunits associated with BKα channels already at the plasma membrane, leading to an increase in apparent Ca2+ sensitivity and activation of the channels in pressurized arterial myocytes and vasodilation. Thus, membrane depolarization activates BK channels through stimulation of ROCK- and Rab11A-dependent trafficking of β1 subunits to the surface of arterial myocytes.
A missense mutation in CIZ1 (c.790A > G, p.S264G) was linked to autosomal dominant cervical dystonia in a large multiplex Caucasian pedigree (OMIM614860, DYT23). CIZ1 is a p21(Cip1/Waf1) -interacting zinc finger protein, widely expressed in neural and extra-neural tissues, and plays a role in DNA synthesis at the G1/S cell-cycle checkpoint. The role of CIZ1 in the nervous system and relative contributions of gain- or loss- of function to the pathogenesis of CIZ1-associated dystonia remain indefinite. Using relative quantitative reverse transcriptase-PCR, cerebellum showed the highest expression levels of Ciz1 in adult mouse brain, over two fold higher than liver, and higher than striatum, midbrain and cerebral cortex. Overall, neural expression of Ciz1 increased with postnatal age. A Ciz1 gene-trap knock-out (KO) mouse model (Ciz1−/−) was generated to examine the functional role(s) of CIZ1 in the sensorimotor nervous system and contributions of CIZ1 to cell-cycle control in the mammalian brain. Ciz1 transcripts were absent in Ciz1−/− mice and reduced by approximately 50% in Ciz1+/− mice. Ciz1−/− mice were fertile but smaller than wild-type (WT) littermates. Ciz1−/− mice did not manifest dystonia, but exhibited mild motoric abnormalities on balance, open-field activity, and gait. To determine the effects of germline KO of Ciz1 on whole-genome gene expression in adult brain, total RNA from mouse cerebellum was harvested from 6 10-month old Ciz1−/− mice and 6 age- and gender- matched WT littermates for whole-genome gene expression analysis. Based on whole-genome gene-expression analyses, genes involved in cellular movement, cell development, cellular growth, cellular morphology and cell-to-cell signaling and interaction were up-regulated in Ciz1−/− mice. The top up-regulated pathways were metabolic and cytokine-cytokine receptor interactions. Down-regulated genes were involved in cell cycle, cellular development, cell death and survival, gene expression and cell morphology. Down-regulated networks included those related to metabolism, focal adhesion, neuroactive ligand-receptor interaction, and MAPK signaling. Based on pathway analyses, transcription factor 7-like 2 (TCF7L2), a member of the Wnt/β-catenin signaling pathway, was a major hub for down-regulated genes, whereas NF-κB was a major hub for up-regulated genes. In aggregate, these data suggest that CIZ1 may be involved in the post-mitotic differentiation of neurons in response to external signals and changes in gene expression may compensate, in part, for CIZ1 deficiency in our Ciz1−/− mouse model. Although CIZ1 deficiency was associated with mild motor abnormalities, germline loss of Ciz1 was not associated with dystonia on the C57BL/6J background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.