Depending on energy sources and demand, the carbon intensity of the public power grid fluctuates over time. Exploiting this variability is an important factor in reducing the emissions caused by data centers. However, regional differences in the availability of lowcarbon energy sources make it hard to provide general best practices for when to consume electricity. Moreover, existing research in this domain focuses mostly on carbon-aware workload migration across geo-distributed data centers, or addresses demand response purely from the perspective of power grid stability and costs.In this paper, we examine the potential impact of shifting computational workloads towards times where the energy supply is expected to be less carbon-intensive. To this end, we identify characteristics of delay-tolerant workloads and analyze the potential for temporal workload shifting in Germany, Great Britain, France, and California over the year 2020. Furthermore, we experimentally evaluate two workload shifting scenarios in a simulation to investigate the influence of time constraints, scheduling strategies, and the accuracy of carbon intensity forecasts. To accelerate research in the domain of carbon-aware computing and to support the evaluation of novel scheduling algorithms, our simulation framework and datasets are publicly available. CCS CONCEPTS• Social and professional topics → Sustainability; • Software and its engineering → Cloud computing.
Distributed file systems are widely used nowadays, yet using their default configurations is often not optimal. At the same time, tuning configuration parameters is typically challenging and time-consuming. It demands expertise and tuning operations can also be expensive. This is especially the case for static parameters, where changes take effect only after a restart of the system or workloads.We propose a novel approach, Magpie, which utilizes deep reinforcement learning to tune static parameters by strategically exploring and exploiting configuration parameter spaces. To boost the tuning of the static parameters, our method employs both server and client metrics of distributed file systems to understand the relationship between static parameters and performance. Our empirical evaluation results show that Magpie can noticeably improve the performance of the distributed file system Lustre, where our approach on average achieves 91.8% throughput gains against default configuration after tuning towards single performance indicator optimization, while it reaches 39.7% more throughput gains against the baseline.
Distributed file systems are widely used nowadays, yet using their default configurations is often not optimal. At the same time, tuning configuration parameters is typically challenging and time-consuming. It demands expertise and tuning operations can also be expensive. This is especially the case for static parameters, where changes take effect only after a restart of the system or workloads.We propose a novel approach, Magpie, which utilizes deep reinforcement learning to tune static parameters by strategically exploring and exploiting configuration parameter spaces. To boost the tuning of the static parameters, our method employs both server and client metrics of distributed file systems to understand the relationship between static parameters and performance. Our empirical evaluation results show that Magpie can noticeably improve the performance of the distributed file system Lustre, where our approach on average achieves 91.8% throughput gains against default configuration after tuning towards single performance indicator optimization, while it reaches 39.7% more throughput gains against the baseline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.