The global incidence of cancer and cancer‐related mortality is expected to rise in recent years despite advancements in cancer diagnosis and therapeutics. Increasing evidences of decrypting molecular mechanisms underlying cancer progression have commanded the tremendous development of synthetic anticancer drugs. With limitations in the current conventional cancer therapeutic approaches, the non‐nutritive dietary phytochemicals have emerged as potent modulators of apoptosis and autophagy associated key signaling pathways in various cancer cells. The dynamic regulation of apoptosis and autophagy by phytochemicals in cancer are identified as promising therapeutic candidates with minimal cytotoxicity and enhanced biological activity. Dietary phytochemicals and their synthetic analogs have exhibited potency in the modulation of apoptosis and autophagy in several cancer cells as individuals or in combination with pre‐existing FDA (Food and Drug Administration) approved anticancer drugs. In the current generation of medical science, developing precision and personalized medicine and their consumption as food supplements will hold high prevalence in cancer therapeutics. Hence understating the impact of dietary phytochemicals on human health and their molecular mechanism will thrive a new horizon in cancer therapeutics. Hence, this review has emphasized the role of apoptotic/autophagy modulating dietary phytochemicals in cancer therapy, their preclinical and clinical applications and the future direction of enhanced nano‐formulation for better clinical efficacy.
Green synthetic protocol refers to the development of processes for the sustainable production of chemicals and materials. For the synthesis of various biologically active compounds, energy-efficient and environmentally benign processes are applied, such as microwave irradiation technology, ultrasound-mediated synthesis, photo-catalysis (ultraviolet, visible and infrared irradiation), molecular sieving, grinding and milling techniques, etc. Thesemethods are considered sustainable technology and become valuable green protocol to synthesize new drug molecules as theyprovidenumerous benefits over conventional synthetic methods.Based on this concept, oxadiazole derivatives are synthesized under microwave irradiation technique to reduce the formation of byproduct so that the product yield can be increased quantitatively in less reaction time. Hence, the synthesis of drug molecules under microwave irradiation follows a green chemistry approach that employs a set of principles to minimize or remove the utilization and production of hazardous toxic materials during the design, manufacture and application of chemical substances.This approach plays a major role in controlling environmental pollution by utilizing safer solvents, catalysts, suitable reaction conditions and thereby increases the atom economy and energy efficiency. Oxadiazole is a five-membered heterocyclic compound that possesses one oxygen and two nitrogen atoms in the ring system.Oxadiazole moiety is drawing considerable interest for the development of new drug candidates with potential therapeutic activities including antibacterial, antifungal, antiviral, anticonvulsant, anticancer, antimalarial, antitubercular, anti-asthmatic, antidepressant, antidiabetic, antioxidant, antiparkinsonian, analgesic and antiinflammatory, etc. This review focuses on different synthetic approaches of oxadiazole derivatives under microwave heating method and study of their various biological activities.
Microwave radiation is used as a heating source during the synthesis of heterocyclic compounds. The heating mechanisms involved in microwave-induced synthesis include dipolar polarization and ionic conduction. This heating technology follows the green protocol as it involves the use of recyclable organic solvents during synthesis. The microwave heating approach offers a faster rate of reaction, easier work-up procedure, and higher product yield with purity and also reduces environmental pollution. So, microwave heating is applied as a sustainable technology for the efficient production of pyrimidine compounds as one of the heterocyclic moieties. Pyrimidine is a six-membered nitrogenous heterocyclic compound that plays a significant role due to several therapeutic applications. This moiety acts as an essential building block for generating drug candidates with diverse biological activities including anti-cancer (capecitabine), anti-thyroid (propylthiouracil), antihistaminic (pemirolast), antimalarial (pyrimethamine), antidiabetic (alloxan), antihypertensive (minoxidil), anti-inflammatory (octotiamine), antifungal (cyprodinil), antibacterial (sulfamethazine), etc. This review is focused on the synthesis of pyrimidine analogs under microwave irradiation technique and the study of their therapeutic potentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.