Aggressive forms of cancer are often defined by recurrent chromosomal alterations, yet in most cases, the causal or contributing genetic components remain poorly understood. Here, we utilized microarray informatics to identify candidate oncogenes potentially contributing to aggressive breast cancer behavior. We identified the Rab-coupling protein RCP (also known as RAB11FIP1), which is located at a chromosomal region frequently amplified in breast cancer (8p11-12) as a potential candidate. Overexpression of RCP in MCF10A normal human mammary epithelial cells resulted in acquisition of tumorigenic properties such as loss of contact inhibition, growth-factor independence, and anchorage-independent growth. Conversely, knockdown of RCP in human breast cancer cell lines inhibited colony formation, invasion, and migration in vitro and markedly reduced tumor formation and metastasis in mouse xenograft models. Overexpression of RCP enhanced ERK phosphorylation and increased Ras activation in vitro. As these results indicate that RCP is a multifunctional gene frequently amplified in breast cancer that encodes a protein with Ras-activating function, we suggest it has potential importance as a therapeutic target. Furthermore, these studies provide new insight into the emerging role of the Rab family of small G proteins and their interacting partners in carcinogenesis.
Efforts to improve the clinical outcome of highly aggressive triplenegative breast cancer (TNBC) have been hindered by the lack of effective targeted therapies. Thus, it is important to identify the specific gene targets/pathways driving the invasive phenotype to develop more effective therapeutics. Here we show that ubiquitinassociated and SH3 domain-containing B (UBASH3B), a protein tyrosine phosphatase, is overexpressed in TNBC, where it supports malignant growth, invasion, and metastasis largely through modulating epidermal growth factor receptor (EGFR). We also show that UBASH3B is a functional target of anti-invasive microRNA200a (miR200a) that is down-regulated in TNBC. Importantly, the oncogenic potential of UBASH3B is dependent on its tyrosine phosphatase activity, which targets CBL ubiquitin ligase for dephosphorylation and inactivation, leading to EGFR up-regulation. Thus, UBASH3B may function as a crucial node in bridging multiple invasion-promoting pathways, thereby providing a potential therapeutic target for TNBC.
BackgroundThe binding events of DNA-interacting proteins and their patterns can be extensively characterized by high density ChIP-chip tiling array data. The characteristics of the binding events could be different for different transcription factors. They may even vary for a given transcription factor among different interaction loci. The knowledge of binding sites and binding occupancy patterns are all very useful to understand the DNA-protein interaction and its role in the transcriptional regulation of genes.ResultsIn the view of the complexity of the DNA-protein interaction and the opportunity offered by high density tiled ChIP-chip data, we present a statistical procedure which focuses on identifying the interaction signal regions instead of signal peaks using moving window binomial testing method and deconvolving the patterns of interaction using peakedness and skewness scores. We analyzed ChIP-chip data of 4 different DNA interacting proteins including transcription factors and RNA polymerase in fission yeast using our procedure. Our analysis revealed the variation of binding patterns within and across different DNA interacting proteins. We present their utility in understanding transcriptional regulation from ChIP-chip data.ConclusionsOur method can successfully detect the signal regions and characterize the binding patterns in ChIP-chip data which help appropriate analysis of the ChIP-chip data.
ObjectivesFrom the first description by Leo Kanner [1], autism has been an enigmatic neurobehavioral phenomenon. The new genetic/genomic technologies of the past decade have not been as productive as originally anticipated in unveiling the mysteries of autism. The specific etiology of the majority of cases of autism spectrum disorder (ASD) is unknown, although numerous genetic/genomic variants and alterations of diverse cellular functions have been reported. Prompted by this failure, we have investigated whether the metabolomics approach might yield results which could simultaneously lead to a blood-based screening/diagnostic test and to treatment options. Methods Plasma samples from a clinically well-defined cohort of 100 male individuals, ages 2-16+ years, with ASD and 32 age-matched typically developing (TD) controls were subjected to global metabolomic analysis. ResultsWe have identified more than 25 plasma metabolites among the approximately 650 metabolites analyzed, representing over 70 biochemical pathways, that can discriminate children with ASD as young as 2 years from children that are developing typically. The discriminating power was greatest in the 2-10 year age group and weaker in older age groups. The initial findings were validated in a second cohort of 83 children, males and females, ages 2-10 years, with ASD and 76 age and gender-matched TD children. The discriminant metabolites were associated with several key biochemical pathways suggestive of potential contributions of increased oxidative stress, mitochondrial dysfunction, inflammation and immune dysregulation in ASD. Further, targeted quantitative analysis of a subset of discriminating metabolites using tandem mass spectrometry provided a reliable laboratory method to detect children with ASD. Conclusion Metabolic profiling appears to be a robust technique to identify children with ASD ages 2-10 years and provides insights into the altered metabolic pathways in ASD, which could lead to treatment strategies. ObjectivesTo uncover novel traits associated with nicotine and alcohol use genetics, we performed a phenome-wide association study in a large multi-ethnic cohort. Methods We investigated 7,688 African-Americans (AFR), 1,133 Asian-Americans (ASN), 14,081 European-Americans (EUR), and 3,492 Hispanic-Americans (HISP) from the Women's Health Initiative, analyzing risk alleles located in the CHRNA5-CHRNA3 locus (rs8034191, rs1051730, rs12914385, rs2036527, and rs16969968) for nicotine-related traits and ADH1B (rs1229984 and rs2066702) and ALDH2 (rs671) for alcohol-related traits with respect to anthropometric characteristics, dietary habits, social status, psychological circumstances, reproductive history, health conditions, and nicotine-and alcohol-related traits. ResultsThe investigated loci resulted associated with novel traits: rs1229984 were associated with family income (p=4.1*10 −12 ), having a pet (p=6.5*10 −11 ), partner education (p=1.8*10 −10 ), "usually expect the best" (p=2.4*10 −7), "felt calm and peaceful" (p=2.6*10 ), and num...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.