Immunosuppressive drugs are used in the treatment of inflammatory and autoimmune diseases, as well as in transplantation. Frequently prescribed in young people, these treatments may have deleterious effects on fertility, pregnancy outcomes and the unborn child. This review aims to summarize the main gonadal side effects of immunosuppressants, to detail the effects on fertility and pregnancy of each class of drug, and to provide recommendations on the management of patients who are seen prior to starting or who are already receiving immunosuppressive treatment, allowing them in due course to bear children. The recommendations for use are established with a rather low level of proof, which needs to be taken into account in the patient management. Methotrexate, mycophenolate, and le- and teri-flunomide, cyclophosphamide, mitoxanthrone are contraindicated if pregnancy is desired due to their teratogenic effects, as well as gonadotoxic effects in the case of cyclophosphamide. Anti-TNF-alpha and mTOR-inhibitors are to be used cautiously if pregnancy is desired, since experience using these drugs is still relatively scarce. Azathioprine, glucocorticoids, mesalazine, anticalcineurins such as cyclosporine and tacrolimus, ß-interferon, glatiramer-acetate and chloroquine can be used during pregnancy, bearing in mind however that side effects may still occur. Experience is limited concerning natalizumab, fingolimod, dimethyl-fumarate and induction treatments. Conclusion: At the time of prescription, patients must be informed of the possible consequences of immunosuppressants on fertility and of the need for contraception. Pregnancy must be planned and the treatment modified if necessary in a pre-conception time period adapted to the half-life of the drug, imperatively in relation with the prescriber of the immunosuppressive drugs.
The long-term outcome of allogenic islet transplantation is unknown. The aim of this study was to evaluate the 10-year outcome of islet transplantation in patients with type 1 diabetes and hypoglycemia unawareness and/or a functioning kidney graft. RESEARCH DESIGN AND METHODSWe enrolled in this prospective parallel-arm cohort study 28 subjects with type 1 diabetes who received islet transplantation either alone (ITA) or after a kidney graft (IAK). Islet transplantation consisted of two or three intraportal infusions of allogenic islets administered within (median [interquartile range]) 68 days . Immunosuppression was induced with interleukin-2 receptor antibodies and maintained with sirolimus and tacrolimus. The primary outcome was insulin independence with A1C £6.5% (48 mmol/mol). Secondary outcomes were patient and graft survival, severe hypoglycemic events (SHEs), metabolic control, and renal function. RESULTSThe primary outcome was met by (Kaplan-Meier estimates [95% CI]) 39% (22-57) and 28% (13-45) of patients 5 and 10 years after islet transplantation, respectively. Graft function persisted in 82% (62-92) and 78% (57-89) of case subjects after 5 and 10 years, respectively, and was associated with improved glucose control, reduced need for exogenous insulin, and a marked decrease of SHEs. ITA and IAK had similar outcomes. Primary graft function, evaluated 1 month after the last islet infusion, was significantly associated with the duration of graft function and insulin independence. CONCLUSIONSIslet transplantation with the Edmonton protocol can provide 10-year markedly improved metabolic control without SHEs in three-quarters of patients with type 1 diabetes, kidney transplanted or not.The demonstration in 2000 that b-cell replacement with allogenic islet transplantation could restore endogenous insulin secretion and near-normal glucose homeostasis was an important landmark for the treatment of type 1 diabetes (1). Since then, islet transplantation has been offered worldwide in .1,000 patients with type 1
While either pancreas or pancreatic islet transplantation can restore endogenous insulin secretion in patients with diabetes, no beta-cell replacement strategies are recommended in the literature. For this reason, the aim of this national expert panel statement is to provide information on the different kinds of beta-cell replacement, their benefit-risk ratios and indications for each type of transplantation, according to type of diabetes, its control and association with end-stage renal disease. Allotransplantation requires immunosuppression, a risk that should be weighed against the risks of poor glycaemic control, diabetic lability and severe hypoglycaemia, especially in cases of unawareness. Pancreas transplantation is associated with improvement in diabetic micro- and macro-angiopathy, but has the associated morbidity of major surgery. Islet transplantation is a minimally invasive radiological or mini-surgical procedure involving infusion of purified islets via the hepatic portal vein, but needs to be repeated two or three times to achieve insulin independence and long-term functionality. Simultaneous pancreas-kidney and pancreas after kidney transplantations should be proposed for kidney recipients with type 1 diabetes with no surgical, especially cardiovascular, contraindications. In cases of high surgical risk, islet after or simultaneously with kidney transplantation may be proposed. Pancreas, or more often islet, transplantation alone is appropriate for non-uraemic patients with labile diabetes. Various factors influencing the therapeutic strategy are also detailed in this report.
Allogeneic hematopoietic stem cell transplantation is mainly indicated in bone marrow dysfunction related to blood diseases, but also in some rare diseases (adrenoleucodystrophy, mitochondrial neurogastrointestinal encephalomyopathy or MNGIE…). After decades, this treatment has proven to be efficient at the cost of numerous early and delayed side effects such as infection, graft-versus-host disease, cardiovascular complications and secondary malignancies. These complications are mainly related to the conditioning, which requires a powerful chemotherapy associated to total body irradiation (myelo-ablation) or immunosuppression (non myelo-ablation). Among side effects, the endocrine complications may be classified as 1) hormonal endocrine deficiencies (particularly gonado- and somatotropic) related to delayed consequences of chemo- and above all radiotherapy, with their consequences on growth, puberty, bone and fertility); 2) auto-immune diseases, particularly dysthyroidism; 3) secondary tumors involving either endocrine glands (thyroid carcinoma) or dependent on hormonal status (breast cancer, meningioma), favored by immune dysregulation and radiotherapy; 4) metabolic complications, especially steroid-induced diabetes and dyslipidemia with their increased cardio-vascular risk. These complications are intricate. Moreover, hormone replacement therapy can modulate the cardio-vascular or the tumoral risk of patients, already increased by radiotherapy and chemotherapy, especially steroids and anthracyclins… Therefore, patients and families should be informed of these side effects and of the importance of a long-term follow-up requiring a multidisciplinary approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.