Population confinements have been one of the most widely adopted non-pharmaceutical interventions (NPIs) implemented by governments across the globe to help contain the spread of the SARS-CoV-2 virus. While confinement measures have been proven to be effective to reduce the number of infections, they entail significant economic and social costs. Thus, different policy makers and social groups have exhibited varying levels of acceptance of this type of measures. In this context, understanding the factors that determine the willingness of individuals to be confined during a pandemic is of paramount importance, particularly, to policy and decision-makers. In this paper, we study the factors that influence the unwillingness to be confined during the COVID-19 pandemic by the means of a large-scale, online population survey deployed in Spain. We perform two types of analyses (logistic regression and automatic pattern discovery) and consider socio-demographic, economic and psychological factors, together with the 14-day cumulative incidence per 100,000 inhabitants. Our analysis of 109,515 answers to the survey covers data spanning over a 5-month time period to shed light on the impact of the passage of time. We find evidence of pandemic fatigue as the percentage of those who report an unwillingness to be in confinement increases over time; we identify significant gender differences, with women being generally less likely than men to be able to sustain long-term confinement of at least 6 months; we uncover that the psychological impact was the most important factor to determine the willingness to be in confinement at the beginning of the pandemic, to be replaced by the economic impact as the most important variable towards the end of our period of study. Our results highlight the need to design gender and age specific public policies, to implement psychological and economic support programs and to address the evident pandemic fatigue as the success of potential future confinements will depend on the population’s willingness to comply with them.
In this paper, we describe the deep learning-based COVID-19 cases predictor and the Pareto-optimal Non-Pharmaceutical Intervention (NPI) prescriptor developed by the winning team of the 500k XPRIZE Pandemic Response Challenge, a four-month global competition organized by the XPRIZE Foundation. The competition aimed at developing datadriven AI models to predict COVID-19 infection rates and to prescribe NPI Plans that governments, business leaders and organizations could implement to minimize harm when reopening their economies. In addition to the validation performed by XPRIZE with real data, the winning models were validated in a real-world scenario thanks to an ongoing collaboration with the Valencian Government in Spain. We believe that this experience contributes to the necessary transition to more evidencedriven policy-making, particularly during a pandemic.
This research is in response to the question of which aspects of package design are more relevant to consumers, when purchasing educational toys. Neuromarketing techniques are used, and we propose a methodology for predicting which areas attract the attention of potential customers. The aim of the present study was to propose a model that optimizes the communication design of educational toys’ packaging. The data extracted from the experiments was studied using new analytical models, based on machine learning techniques, to predict which area of packaging is observed in the first instance and which areas are never the focus of attention of potential customers. The results suggest that the most important elements are the graphic details of the packaging and the methodology fully analyzes and segments these areas, according to social circumstance and which consumer type is observing the packaging.
We describe the deep learning-based COVID-19 cases predictor and the Pareto-optimal Non-Pharmaceutical Intervention (NPI) prescriptor developed by the winning team of the 500k XPRIZE Pandemic Response Challenge. The competition aimed at developing data-driven AI models to predict COVID-19 infection rates and to prescribe NPI Plans that governments, business leaders and organizations could implement to minimize harm when reopening their economies. In addition to the validation performed by XPRIZE with real data, our models were validated in a real-world scenario thanks to an ongoing collaboration with the Valencian Government in Spain. Our experience contributes to a necessary transition to more evidence-driven policy-making during a pandemic.
The shipping industry is an important component of the global trade and economy. In order to ensure law compliance and safety, it needs to be monitored. In this paper, we present a novel ship type classification model that combines vessel transmitted data from the Automatic Identification System, with vessel imagery. The main components of our approach are the Faster R-CNN Deep Neural Network and a Neuro-Fuzzy system with IF-THEN rules. We evaluate our model using real world data and showcase the advantages of this combination while also compare it with other methods. Results show that our model can increase prediction scores by up to 15.4% when compared with the next best model we considered, while also maintaining a level of explainability as opposed to common black box approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.