Summary
Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities.
ADP-ribosylation, a modification of proteins, nucleic acids and metabolites, confers broad functions, including roles in stress responses elicited for example by DNA damage and viral infection and is involved in intra-and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis and cell death. ADP-ribosylation is catalyzed by ADPribosyltransferases, which transfer ADP-ribose from NAD + onto substrates. The modification, which occurs as mono-or poly-ADP-ribosylation, is reversible due to the action of different ADPribosylhydrolases. Importantly, inhibitors of ADP-ribosyltransferases are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as anti-viral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being
Cigarette smoke induces significant changes in oxidant defense responses; some of these are further amplified, but not in a linear fashion, in individuals who develop COPD.
Enzymes with a protein kinase fold transfer phosphate from adenosine 5′-triphosphate (ATP) to substrates in a process known as phosphorylation. Here, we show that the Legionella meta-effector SidJ adopts a protein kinase fold, yet unexpectedly catalyzes protein polyglutamylation. SidJ is activated by host-cell calmodulin to polyglutamylate the SidE family of ubiquitin (Ub) ligases. Crystal structures of the SidJ-calmodulin complex reveal a protein kinase fold that catalyzes ATP-dependent isopeptide bond formation between the amino group of free glutamate and the γ-carboxyl group of an active-site glutamate in SidE. We show that SidJ polyglutamylation of SidE, and the consequent inactivation of Ub ligase activity, is required for successful Legionella replication in a viable eukaryotic host cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.