We designed, manufactured and characterized two birefringent microstructured fibers that feature a 5-fold increase in polarimetric sensitivity to hydrostatic pressure compared to the earlier reported values for microstructured fibers. We demonstrate a good agreement between the finite element simulations and the experimental values for the polarimetric sensitivity to pressure and to temperature. The sensitivity to hydrostatic pressure has a negative sign and exceeds -43 rad/MPa x m at 1.55 microm for both fibers. In combination with the very low sensitivity to temperature, this makes our fibers the candidates of choice for the development of microstructured fiber based hydrostatic pressure measurement systems.
A user‐friendly, fiber‐coupled, single‐photon source operating at telecom wavelengths is a key component of photonic quantum networks providing long‐haul, ultra‐secure data exchange. To take full advantage of quantum‐mechanical data protection and to maximize the transmission rate and distance, a true quantum source providing single photons on demand is highly desirable. This great challenge is tackled by developing a ready‐to‐use semiconductor quantum‐dot‐based device that launches single photons at a wavelength of 1.3 µm directly into a single‐mode optical fiber. In the proposed approach, the quantum dot is deterministically integrated into a nanophotonic structure to ensure efficient on‐chip coupling into a fiber. The whole arrangement is integrated into a 19ʺ compatible housing to enable stand‐alone operation by cooling via a compact Stirling cryocooler. The realized source delivers single photons with a multiphoton events probability as low as 0.15 and a single‐photon emission rate of up to 73 kHz into a standard telecom single‐mode fiber.
For the first time to our knowledge, we demonstrate a coherent supercontinuum in silica fibers reaching 2.2 µm in a long wavelength range. The process of supercontinuum generation was studied experimentally and numerically in two microstructured fibers with a germanium doped core, having flat all-normal chromatic dispersion optimized for pumping at 1.55 µm. The fibers were pumped with two pulse lasers operating at 1.56 µm with different pulse duration times equal respectively to 23 fs and 460 fs. The experimental results are in a good agreement with the simulations conducted by solving the generalized nonlinear Schrödinger equation with the split-step Fourier method. The simulations also confirmed high coherence of the generated spectra and revealed that their long wavelength edge (2.2 µm) is related to OH contamination. Therefore, improving the fibers purity will result in further up-shift of the long wavelength spectra limit.
We report on the sensing characteristics of rocking filters fabricated in two microstructured fibers with enhanced polarimetric sensitivity to hydrostatic pressure. The filter fabricated in the first fiber shows a very high sensitivity to pressure ranging from 16.2 to 43.4 nm/MPa, depending on the resonance order and features an extremely low cross-sensitivity between pressure and temperature 28 ÷ 89 × 10(3) K/MPa. The filter fabricated in the second fiber has an extreme sensitivity to pressure ranging from -72.6 to -177 nm/MPa, but a less favorable cross-sensitivity between pressure and temperature of 1.05 ÷ 3.50 × 10(3) K/MPa. These characteristics allow using the rocking filters for pressure measurements with mbar resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.