The 1000 Genomes Project (1kGP), launched in 2008, is the largest fully open resource of whole genome sequencing (WGS) data consented for public distribution of raw sequence data without access or use restrictions. The final (phase 3) 2015 release of 1kGP included 2,504 unrelated samples from 26 populations, representing five continental regions of the world and was based on a combination of technologies including low coverage WGS (mean depth 7.4X), high coverage whole exome sequencing (mean depth 65.7X), and microarray genotyping. Here, we present a new, high coverage WGS resource encompassing the original 2,504 1kGP samples, as well as an additional 698 related samples that result in 602 complete trios in the 1kGP cohort. We sequenced this expanded 1kGP cohort of 3,202 samples to a targeted depth of 30X using Illumina NovaSeq 6000 instruments. We performed SNV/INDEL calling against the GRCh38 reference using GATK HaplotypeCaller, and generated a comprehensive set of SVs by integrating multiple analytic methods through a sophisticated machine learning model, upgrading the 1kGP dataset to current state-of-the-art standards. Using this strategy, we defined over 111 million SNVs, 14 million INDELs, and ~170 thousand SVs across the entire cohort of 3,202 samples with estimated false discovery rate (FDR) of 0.3%, 1.0%, and 1.8%, respectively. By comparison to the low-coverage phase 3 callset, we observed substantial improvements in variant discovery and estimated FDR that were facilitated by high coverage re-sequencing and expansion of the cohort. Specifically, we called 7% more SNVs, 59% more INDELs, and 170% more SVs per genome than the phase 3 callset. Moreover, we leveraged the presence of families in the cohort to achieve superior haplotype phasing accuracy and we demonstrate improvements that the high coverage panel brings especially for INDEL imputation. We make all the data generated as part of this project publicly available and we envision this updated version of the 1kGP callset to become the new de facto public resource for the worldwide scientific community working on genomics and genetics.
Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR-dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers with possible implications for prognostic and therapeutic strategies.
To test the performance of a new sequencing platform, develop an updated somatic calling pipeline and establish a reference for future benchmarking experiments, we performed whole-genome sequencing of 3 common cancer cell lines (COLO-829, HCC-1143 and HCC-1187) along with their matched normal cell lines to great sequencing depths (up to 278x coverage) on both Illumina HiSeqX and NovaSeq sequencing instruments. Somatic calling was generally consistent between the two platforms despite minor differences at the read level. We designed and implemented a novel pipeline for the analysis of tumor-normal samples, using multiple variant callers. We show that coupled with a high-confidence filtering strategy, the use of combination of tools improves the accuracy of somatic variant calling. We also demonstrate the utility of the dataset by creating an artificial purity ladder to evaluate the somatic pipeline and benchmark methods for estimating purity and ploidy from tumor-normal pairs. The data and results of the pipeline are made accessible to the cancer genomics community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.