The International Human Epigenome Consortium (IHEC) coordinates the production of reference epigenome maps through the characterization of the regulome, methylome, and transcriptome from a wide range of tissues and cell types. To define conventions ensuring the compatibility of datasets and establish an infrastructure enabling data integration, analysis, and sharing, we developed the IHEC Data Portal (http://epigenomesportal.ca/ihec). The portal provides access to >7,000 reference epigenomic datasets, generated from >600 tissues, which have been contributed by seven international consortia: ENCODE, NIH Roadmap, CEEHRC, Blueprint, DEEP, AMED-CREST, and KNIH. The portal enhances the utility of these reference maps by facilitating the discovery, visualization, analysis, download, and sharing of epigenomics data. The IHEC Data Portal is the official source to navigate through IHEC datasets and represents a strategy for unifying the distributed data produced by international research consortia.
Background With the decreasing cost of sequencing and the rapid developments in genomics technologies and protocols, the need for validated bioinformatics software that enables efficient large-scale data processing is growing. Findings Here we present GenPipes, a flexible Python-based framework that facilitates the development and deployment of multi-step workflows optimized for high-performance computing clusters and the cloud. GenPipes already implements 12 validated and scalable pipelines for various genomics applications, including RNA sequencing, chromatin immunoprecipitation sequencing, DNA sequencing, methylation sequencing, Hi-C, capture Hi-C, metagenomics, and Pacific Biosciences long-read assembly. The software is available under a GPLv3 open source license and is continuously updated to follow recent advances in genomics and bioinformatics. The framework has already been configured on several servers, and a Docker image is also available to facilitate additional installations. Conclusions GenPipes offers genomics researchers a simple method to analyze different types of data, customizable to their needs and resources, as well as the flexibility to create their own workflows.
With the decreasing cost of sequencing and the rapid developments in genomics technologies and protocols, the need for validated bioinformatics software that enables efficient large-scale data processing is growing. Here we present GenPipes, a flexible Python-based framework that facilitates the development and deployment of multi-step workflows optimized for High Performance Computing clusters and the cloud. GenPipes already implements 12 validated and scalable pipelines for various genomics applications, including RNA-Seq, ChIP-Seq, DNA-Seq, Methyl-Seq, Hi-C, capture Hi-C, metagenomics and PacBio long read assembly. The software is available under a GPLv3 open source license and is continuously updated to follow recent advances in genomics and bioinformatics. The framework has been already configured on several servers and a docker image is also available to facilitate additional installations. In summary, GenPipes offers genomic researchers a simple method to analyze different types of data, customizable to their needs and resources, as well as the flexibility to create their own workflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.