Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of different Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one-year cycle both from morphospecies counts and high-throughput sequencing (HTS), and, (v) proof of the co-occurrence of Coleps and their endosymbiotic algae from HTS-based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in different depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the different lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae). Our results suggest a future revision of the species concept of the genus Coleps.
Mining activities can cause drastic disturbances in soil properties, which adversely affect the nutrient cycling and soil environment. As a result, many efforts have been made to explore suitable reclamation strategies that can be applied to accelerate ecology restoration. In this study, we reconstructed mine soils with fly ash, gangue, sludge, planted ryegrass, and inoculated arbuscular mycorrhizal fungi (AMF) in Pangzhuang mine of Xuzhou during 2009 to 2015. The soil aggregation process, enzyme activities (i.e., invertase, urease and acid phosphatase activities), soil organic carbon (SOC) as well as other soil nutrients such as nitrogen, phosphorus, and potassium contents of the reconstructed mine soils were monitored during 6-year reclamation. The integrated application of sludge and AMF led to a promising reclamation performance of mining areas, in which soil aggregate stability, enzyme activities, SOC, and ryegrass biomass were effectively enhanced. The micro-aggregates (< 0.25 mm) decreased with the increase of macro-aggregates (> 0.25 mm) during the reclamation, indicating that macro-aggregates were gradually formed from micro-aggregates during the pedogenesis of reconstructed mine soils. The correlation analysis shows that SOC contents in aggregate fraction of 0.25∼0.5 mm were correlated with aggregate distribution and enzyme activities. Enzyme activities, however, were not significantly correlated with aggregate distribution. The outcomes from the present study could enrich our understanding on soil property changes in pedogenesis process of reconstructed mine soils, and meanwhile, the employment of sludge combined with AMF is suggested to be an effective alternative for the mine soil reclamation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.