BackgroundCircular RNAs (circRNAs) are RNA transcripts that are widespread in the eukaryotic genome. Recent evidence indicates that circRNAs play important roles in tissue development, gene regulation, and carcinogenesis. However, whether circRNAs encode functional proteins remains elusive, although translation of several circRNAs was recently reported.MethodsCircRNA deep sequencing was performed by using 10 pathologically diagnosed glioblastoma samples and their paired adjacent normal brain tissues. Northern blotting, Sanger sequencing, antibody, and liquid chromatograph Tandem Mass Spectrometer were used to confirm the existence of circ-FBXW7 and its encoded protein in in two cell lines. Lentivirus-transfected stable U251 and U373 cells were used to assess the biological functions of the novel protein in vitro and in vivo (five mice per group). Clinical implications of circ-FBXW7 were assessed in 38 pathologically diagnosed glioblastoma samples and their paired periphery normal brain tissues by using quantitative polymerase chain reaction (two-sided log-rank test).ResultsCirc-FBXW7 is abundantly expressed in the normal human brain (reads per kilobase per million mapped reads [RPKM] = 9.31). The spanning junction open reading frame in circ-FBXW7 driven by internal ribosome entry site encodes a novel 21-kDa protein, which we termed FBXW7-185aa. Upregulation of FBXW7-185aa in cancer cells inhibited proliferation and cell cycle acceleration, while knockdown of FBXW7-185aa promoted malignant phenotypes in vitro and in vivo. FBXW7-185aa reduced the half-life of c-Myc by antagonizing USP28-induced c-Myc stabilization. Moreover, circ-FBXW7 and FBXW7-185aa levels were reduced in glioblastoma clinical samples compared with their paired tumor-adjacent tissues (P < .001). Circ-FBXW7 expression positively associated with glioblastoma patient overall survival (P = .03).ConclusionsEndogenous circRNA encodes a functional protein in human cells, and circ-FBXW7 and FBXW7-185aa have potential prognostic implications in brain cancer.
Accumulating evidence shows that microbial co-infection increases the risk of disease severity in humans. There have been few studies about SARS-CoV-2 co-infection with other pathogens. In this retrospective study, 257 laboratory-confirmed COVID-19 patients in Jiangsu Province were enrolled from January 22 to February 2, 2020. They were reconfirmed by real-time RT-PCR and tested for 39 respiratory pathogens. In total, 24 respiratory pathogens were found among the patients, and 242 (94.2 %) patients were co-infected with one or more pathogens. Bacterial co-infections were dominant in all COVID-19 patients, Streptococcus pneumoniae was the most common, followed by Klebsiella pneumoniae and Haemophilus influenzae. The highest and lowest rates of co-infections were found in patients aged 15-44 and below 15, respectively. Most co-infections occurred within 1-4 days of onset of COVID-19 disease. In addition, the proportion of viral co-infections, fungal co-infections and bacterial-fungal co-infections were the highest severe COVID-19 cases. These results will provide a helpful reference for diagnosis and clinical treatment of COVID-19 patients.
Circular RNAs (circRNAs) are recognized as functional non-coding transcripts in eukaryotic cells. Recent evidence has indicated that even though circRNAs are generally expressed at low levels, they may be involved in many physiological or pathological processes, such as gene regulation, tissue development and carcinogenesis. Although the 'microRNA sponge' function is well characterized, most circRNAs do not contain perfect trapping sites for microRNAs, which suggests the possibility that circRNAs have functions that have not yet been defined. In this study, we show that a circRNA containing an open reading frame (ORF) driven by the internal ribosome entry site (IRES) can translate a functional protein. The circular form of the SNF2 histone linker PHD RING helicase (SHPRH) gene encodes a novel protein that we termed SHPRH-146aa. Circular SHPRH (circ-SHPRH) uses overlapping genetic codes to generate a 'UGA' stop codon, which results in the translation of the 17 kDa SHPRH-146aa. Both circ-SHPRH and SHPRH-146aa are abundantly expressed in normal human brains and are down-regulated in glioblastoma. The overexpression of SHPRH-146aa in U251 and U373 glioblastoma cells reduces their malignant behavior and tumorigenicity in vitro and in vivo. Mechanistically, SHPRH-146aa protects full-length SHPRH from degradation by the ubiquitin proteasome. Stabilized SHPRH sequentially ubiquitinates proliferating cell nuclear antigen (PCNA) as an E3 ligase, leading to inhibited cell proliferation and tumorigenicity. Our findings provide a novel perspective regarding circRNA function in physiological and pathological processes. Specifically, SHPRH-146aa generated from overlapping genetic codes of circ-SHPRH is a tumor suppressor in human glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.