Objective To discover the mechanism of the sirtuin 1 (SIRT1)-mediated nuclear factor-κB (NF-κB) pathway in the protection against necrotizing enterocolitis (NEC) in neonatal mice.
Materials and Methods Neonatal mice were treated with EX527 (an inhibitor of SIRT1) and/or pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB). The survival rate of the mice was recorded. Hematoxylin and eosin (HE) staining was performed to observe the pathological changes in the intestines. Furthermore, western blotting, enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction were conducted to measure the protein and gene expression, while corresponding kits were used to detect the levels of oxidative stress indicators.
Results PDTC increased the survival rate of NEC mice. When compared with the NEC+ EX527 + PDTC group, the histological NEC score was higher in the NEC + EX527 group but lower in the NEC + PDTC group. SIRT1 expression in the intestines of NEC mice was downregulated, with an increase in p65 nuclear translocation. Additionally, malondialdehyde increased and glutathione peroxidase decreased in the intestines of NEC mice, with the upregulation of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, as well as the downregulation of ZO-1, occludin, and claudin-4 in the intestines. However, the above changes could be improved by PDTC, which could be further reversed by EX527.
Conclusion SIRT1 can mitigate inflammation and the oxidative stress response and improve intestinal permeability by mediating the NF-κB pathway, playing an important role in the alleviation of NEC.
The increasingly severe environmental problems urge human beings to develop clean energy to replace the traditional fossil one. “Green hydrogen”, which is generated from water by renewable energy, is seen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.