The accuracy of the signs and tests that clinicians use to diagnose ventilator-associated pneumonia (VAP) and initiate antibiotic treatment has not been well characterized. We sought to characterize and compare the accuracy of physical examination, chest radiography, endotracheal aspirate (ETA), bronchoscopic sampling cultures (protected specimen brush [PSB] and bronchoalveolar lavage [BAL]), and CPIS > 6 to diagnose VAP. We searched six databases from inception through September 2019 and selected English-language studies investigating accuracy of any of the above tests for VAP diagnosis. Reference standard was histopathological analysis. Two reviewers independently extracted data and assessed study quality. We included 25 studies (1639 patients). The pooled sensitivity and specificity of physical examination findings for VAP were poor: fever (66.4% [95% confidence interval [CI]: 40.7-85.0], 53.9% [95% CI 34.5-72.2]) and purulent secretions (77.0% [95% CI 64.7-85.9], 39.0% [95% CI 25.8-54.0]). Any infiltrate on chest radiography had a sensitivity of 88.9% (95% CI 73.9-95.8) and specificity of 26.1% (95% CI 15.1-41.4). ETA had a sensitivity of 75.7% (95% CI 51.5-90.1) and specificity of 67.9% (95% CI 40.5-86.8). Among bronchoscopic sampling methods, PSB had a sensitivity of 61.4% [95% CI 43.7-76.5] and specificity of 76.5% [95% CI 64.2-85.6]; while BAL had a sensitivity of 71.1% [95% CI 49.9-85.9] and specificity of 79.6% [95% CI 66.2-85.9]. CPIS > 6 had a sensitivity of 73.8% (95% CI 50.6-88.5) and specificity of 66.4% (95% CI 43.9-83.3). Classic clinical indicators had poor accuracy for diagnosis of VAP. Reliance upon these indicators in isolation may result in misdiagnosis and potentially unnecessary antimicrobial use.
Table of contentsP001 - Sepsis impairs the capillary response within hypoxic capillaries and decreases erythrocyte oxygen-dependent ATP effluxR. M. Bateman, M. D. Sharpe, J. E. Jagger, C. G. EllisP002 - Lower serum immunoglobulin G2 level does not predispose to severe flu.J. Solé-Violán, M. López-Rodríguez, E. Herrera-Ramos, J. Ruíz-Hernández, L. Borderías, J. Horcajada, N. González-Quevedo, O. Rajas, M. Briones, F. Rodríguez de Castro, C. Rodríguez GallegoP003 - Brain protective effects of intravenous immunoglobulin through inhibition of complement activation and apoptosis in a rat model of sepsisF. Esen, G. Orhun, P. Ergin Ozcan, E. Senturk, C. Ugur Yilmaz, N. Orhan, N. Arican, M. Kaya, M. Kucukerden, M. Giris, U. Akcan, S. Bilgic Gazioglu, E. TuzunP004 - Adenosine a1 receptor dysfunction is associated with leukopenia: A possible mechanism for sepsis-induced leukopeniaR. Riff, O. Naamani, A. DouvdevaniP005 - Analysis of neutrophil by hyper spectral imaging - A preliminary reportR. Takegawa, H. Yoshida, T. Hirose, N. Yamamoto, H. Hagiya, M. Ojima, Y. Akeda, O. Tasaki, K. Tomono, T. ShimazuP006 - Chemiluminescent intensity assessed by eaa predicts the incidence of postoperative infectious complications following gastrointestinal surgeryS. Ono, T. Kubo, S. Suda, T. Ueno, T. IkedaP007 - Serial change of c1 inhibitor in patients with sepsis – A prospective observational studyT. Hirose, H. Ogura, H. Takahashi, M. Ojima, J. Kang, Y. Nakamura, T. Kojima, T. ShimazuP008 - Comparison of bacteremia and sepsis on sepsis related biomarkersT. Ikeda, S. Suda, Y. Izutani, T. Ueno, S. OnoP009 - The changes of procalcitonin levels in critical patients with abdominal septic shock during blood purificationT. Taniguchi, M. OP010 - Validation of a new sensitive point of care device for rapid measurement of procalcitoninC. Dinter, J. Lotz, B. Eilers, C. Wissmann, R. LottP011 - Infection biomarkers in primary care patients with acute respiratory tract infections – Comparison of procalcitonin and C-reactive proteinM. M. Meili, P. S. SchuetzP012 - Do we need a lower procalcitonin cut off?H. Hawa, M. Sharshir, M. Aburageila, N. SalahuddinP013 - The predictive role of C-reactive protein and procalcitonin biomarkers in central nervous system infections with extensively drug resistant bacteriaV. Chantziara, S. Georgiou, A. Tsimogianni, P. Alexandropoulos, A. Vassi, F. Lagiou, M. Valta, G. Micha, E. Chinou, G. MichaloudisP014 - Changes in endotoxin activity assay and procalcitonin levels after direct hemoperfusion with polymyxin-b immobilized fiberA. Kodaira, T. Ikeda, S. Ono, T. Ueno, S. Suda, Y. Izutani, H. ImaizumiP015 - Diagnostic usefullness of combination biomarkers on ICU admissionM. V. De la Torre-Prados, A. Garcia-De la Torre, A. Enguix-Armada, A. Puerto-Morlan, V. Perez-Valero, A. Garcia-AlcantaraP016 - Platelet function analysis utilising the PFA-100 does not predict infection, bacteraemia, sepsis or outcome in critically ill patientsN. Bolton, J. Dudziak, S. Bonney, A. Tridente, P. NeeP017 - Extracellular histone H3 levels are in...
Objectives To summarise and compare the accuracy of physical examination, computed tomography (CT), sonography of the optic nerve sheath diameter (ONSD), and transcranial Doppler pulsatility index (TCD-PI) for the diagnosis of elevated intracranial pressure (ICP) in critically ill patients. Design Systematic review and meta-analysis. Data sources Six databases, including Medline, EMBASE, and PubMed, from inception to 1 September 2018. Study selection criteria English language studies investigating accuracy of physical examination, imaging, or non-invasive tests among critically ill patients. The reference standard was ICP of 20 mm Hg or more using invasive ICP monitoring, or intraoperative diagnosis of raised ICP. Data extraction Two reviewers independently extracted data and assessed study quality using the quality assessment of diagnostic accuracy studies tool. Summary estimates were generated using a hierarchical summary receiver operating characteristic (ROC) model. Results 40 studies (n=5123) were included. Of physical examination signs, pooled sensitivity and specificity for increased ICP were 28.2% (95% confidence interval 16.0% to 44.8%) and 85.9% (74.9% to 92.5%) for pupillary dilation, respectively; 54.3% (36.6% to 71.0%) and 63.6% (46.5% to 77.8%) for posturing; and 75.8% (62.4% to 85.5%) and 39.9% (26.9% to 54.5%) for Glasgow coma scale of 8 or less. Among CT findings, sensitivity and specificity were 85.9% (58.0% to 96.4%) and 61.0% (29.1% to 85.6%) for compression of basal cisterns, respectively; 80.9% (64.3% to 90.9%) and 42.7% (24.0% to 63.7%) for any midline shift; and 20.7% (13.0% to 31.3%) and 89.2% (77.5% to 95.2%) for midline shift of at least 10 mm. The pooled area under the ROC (AUROC) curve for ONSD sonography was 0.94 (0.91 to 0.96). Patient level data from studies using TCD-PI showed poor performance for detecting raised ICP (AUROC for individual studies ranging from 0.55 to 0.72). Conclusions Absence of any one physical examination feature is not sufficient to rule out elevated ICP. Substantial midline shift could suggest elevated ICP, but the absence of shift cannot rule it out. ONSD sonography might have use, but further studies are needed. Suspicion of elevated ICP could necessitate treatment and transfer, regardless of individual non-invasive tests. Registration PROSPERO CRD42018105642.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.