Fusarium head blight (FHB; scab) caused mainly byFusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON) which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05). Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry) and FHB resistance (Type I and Type II), respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.
Expected climatic changes likely elicit serious challenges for crop production. Therefore, it is indispensable to investigate the response of crop growth parameters and yield under temperature variability environments. The current experiment on chilli pepper growth was conducted in a field, rain-shelter plastic house, and plastic greenhouse, with accumulated temperatures of 2832 °C, 2967 °C, and 3105 °C in 2017; and 2944 °C, 3091 °C, and 3168 °C in 2018 growing seasons. Based on soil analysis, 132.7 kg ha−1 (1× of livestock manure compost as an optimum and 265.4 kg ha−1 (2×) as a double amount of organic matter were applied to each simulated temperature condition. The results showed that organic manure application favorably affects the growth attributes and nutrient uptake of chilli pepper with the highest values found in the plastic greenhouse, followed by the rain-shelter house, over the open field cultivation condition. The highest growth of chilli pepper was at the 2× rate of organic manure application, whereas the highest yield was found at the 1× rate of organic manure application. The application of organic manure at the 1× rate in the greenhouse increased root, shoot, and fruit dry weights of chilli pepper by 21.4%, 52.4%, and 79.7%, respectively, compared to the control values. These results indicate that the rational use of organic amendments might be the best solution for chilli pepper production under variable climate conditions.
Weeds are notorious plant species exhibiting a harmful impact on crops. Biological weed control is an efficient and environmentally friendly technique, usually constitutes naturally derived compounds, including bioherbicidal metabolites produced by Streptomyces sp. The isolation and structural identification of phytotoxic compounds from Streptomyces have recently been proposed as an effective way to the discovery of novel bioherbicides. In the screening of bioherbicidal agents, isolated Streptomyces strain KRA17-580 demonstrated significant phytotoxic activity against Digitaria ciliaris. Phylogenetic analysis of the 16S rRNA sequence indicated that isolated KRA17-580 is similar to Streptomyces olivochromogenes. The bacterial culture conditions were optimized for temperature, agitation, and initial pH. Streptomyces strain KRA17-580 showed intense phytotoxic activity and high cell mass at an initial pH of 5.5–7.0, more than 150 rpm, and 25–30 °C. The herbicidal compounds isolated from the culture filtrate of strain KRA17-580 were purified by solvent partition, C18, Sephadex LH20 column chromatography, and high-performance liquid chromatography. By 1D-NMR, 2D-NMR, and electrospray ionization mass spectrometry analysis, the 580-H1 and 580-H2 compounds were identified as a cinnoline-4-carboxamide (M W, 173.0490; C9H7N3O2) and cinnoline-4-carboxylic acid (M W, 174.0503; C9H6N2O2), respectively. Only these two herbicidal compounds showed strong phytotoxic activity against D. ciliaris in foliar applications. However, compound 580-H2 was more phytotoxic than 580-H1 and the toxicity was dose-dependent. The herbicidal metabolite KRA17-580 produced by Streptomyces sp. is a new bioherbicidal candidate that may provide a new lead molecule for more efficient phytotoxic compounds.
The purpose of this research was investigation of the effect of Fan Relationship Management on Fan Lifetime Value in Iranian premier Football league. The necessary data were gathered through interview, observation, review the relevant theoretical literature and questionnaires. The statistical population was consisted the upper of sixteen years of football fans. The number of 527 questionnaires was used from gathered 674 questionnaires. Results showed that service quality (Beta=0.394) and knowledge management (Beta=0.543) have positive effect on fan lifetime value directly. Also, organizational support has indirectly effect on fan lifetime value. There is necessary for sport clubs that spend extensive efforts for maintaining current fans and attracting new fans by providing suitable facility, conducting customer based program and creating knowledge and information through various relational channels to increase fan lifetime value
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.