Sixteen research groups participated in the ISOBM TD-4 Workshop in which the reactivity and specificity of 56 monoclonal antibodies against the MUC1 mucin was investigated using a diverse panel of target antigens and MUC1 mucin- related synthetic peptides and glycopeptides. The majority of antibodies (34/56) defined epitopes located within the 20-amino acid tandem repeat sequence of the MUC1 mucin protein core. Of the remaining 22 antibodies, there was evidence for the involvement of carbohydrate residues in the epitopes for 16 antibodies. There was no obvious relationship between the type of immunogen and the specificity of each antibody. Synthetic peptides and glycopeptides were analyzed for their reactivity with each antibody either by assay of direct binding (e.g. by ELISA or BiaCore) or by determining the capacity of synthetic ligands to inhibit antibody binding interactions. There was good concordance between the research groups in identifying antibodies reactive with peptide epitopes within the MUC1 protein core. Epitope mapping tests were performed using the Pepscan analysis for antibody reactivity against overlapping synthetic peptides, and results were largely consistent between research groups. The dominant feature of epitopes within the MUC1 protein core was the presence, in full or part, of the hydrophilic sequence of PDTRPAP. Carbohydrate epitopes were less easily characterized and the most useful reagents in this respect were defined oligosaccharides, rather than purified mucin preparations enriched in particular carbohydrate moieties. It was evident that carbohydrate residues were involved in many epitopes, by regulating epitope accessibility or masking determinants, or by stabilizing preferred conformations of peptide epitopes within the MUC1 protein core. Overall, the studies highlight concordance between groups rather than exposing inconsistencies which gives added confidence to the results of analyses of the specificity of anti-mucin monoclonal antibodies.
The measurement of complexed PSA represents an alternative to the use of percent free PSA, although the patient populations identified by the 2 tests are different.
Twelve research groups participated in the ISOBM TD-3 Workshop in which the reactivity and specificity of 83 antibodies against prostate-specific antigen (PSA) were investigated. Using a variety of techniques including cross-inhibition assays, Western blotting, BIAcore, immunoradiometric assays and immunohistochemistry, the antibodies were categorized into six major groups which formed the basis for mapping onto two- and three-dimensional (2-D and 3-D) models of PSA. The overall findings of the TD-3 Workshop are summarized in this report. In agreement with all participating groups, three main antigenic domains were identified: free PSA-specific epitopes located in or close to amino acids 86–91; discontinuous epitopes specific for PSA without human kallikrein (hK2) cross-reactivity located at or close to amino acids 158–163; and continuous or linear epitopes shared between PSA and hK2 located close to amino acids 3–11. In addition, several minor and partly overlapping domains were also identified. Clearly, the characterization of antibodies from this workshop and the location of their epitopes on the 3-D model of PSA illustrate the importance of selecting appropriate antibody pairs for use in immunoassays. It is hoped that these findings and the epitope nomenclature described in this TD-3 Workshop are used as a standard for future evaluation of anti-PSA antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.