and comprise 7.482 × 10 20 protons on target in neutrino mode, which yielded in the far detector 32 e-like and 135 μ-like events, and 7.471 × 10 20 protons on target in antineutrino mode, which yielded 4 e-like and 66 μ-like events. Reactor measurements of sin 2 2θ 13 have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase δ CP spans the range (−3.13, −0.39) for normal mass ordering. The CP conservation hypothesis (δ CP ¼ 0, π) is excluded at 90% C.L.
We report on measurements of neutrino oscillation using data from the T2K long-baseline neutrino experiment collected between 2010 and 2013. In an analysis of muon neutrino disappearance alone, we find the following estimates and 68% confidence intervals for the two possible mass hierarchies: normal hierarchy∶ sin 2 θ 23 ¼ 0.514 þ0.055 −0.056 and Δm 2 32 ¼ ð2.51 AE 0.10Þ × 10 −3 eV 2 =c 4 and inverted hierarchy∶ sin 2 θ 23 ¼ 0.511 AE 0.055 and Δm 2 13 ¼ ð2.48 AE 0.10Þ × 10 −3 eV 2 =c 4 . The analysis accounts for multinucleon mechanisms in neutrino interactions which were found to introduce negligible bias. We describe our first analyses that combine measurements of muon neutrino disappearance and electron neutrino appearance to estimate four oscillation parameters, jΔm 2 j, sin 2 θ 23 , sin 2 θ 13 , δ CP , and the mass hierarchy. Frequentist and Bayesian intervals are presented for combinations of these parameters, with and without including recent reactor measurements. At 90% confidence level and including reactor measurements, we exclude the region δ CP ¼ ½0.15; 0.83 π for normal hierarchy and δ CP ¼ ½−0.08; 1.09 π for inverted hierarchy. The T2K and reactor data weakly favor the normal hierarchy with a Bayes factor of 2.2. The most probable values and 68% one-dimensional credible intervals for the other oscillation parameters, when reactor data are included, are sin 2 θ 23 ¼ 0.528 þ0.055 −0.038 and jΔm 2 32 j ¼ ð2.51 AE 0.11Þ × 10 −3 eV 2 =c 4 .
We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734 × 10 20 protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross section in muon kinematic variables (cos θ μ , p μ ), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include nucleon-nucleon correlations but, given the present precision, the measurement does not distinguish among the available models. The data also agree with Monte Carlo simulations which use effective parameters that are tuned to external data to describe the nuclear effects. The total cross section in the full phase space is σ ¼ ð0.417 AE 0.047ðsystÞ AE 0.005ðstatÞÞ × 10 −38 cm 2 nucleon −1 and the cross section integrated in the region of phase space with largest efficiency and best signal-over-background ratio (cos θ μ > 0.6 and p μ > 200 MeV) is σ ¼ ð0.202 AE 0.036ðsystÞ AE 0.003ðstatÞÞ × 10 −38 cm 2 nucleon −1 .
The T2K experiment has performed a search for νe disappearance due to sterile neutrinos using 5.9 × 10 20 protons on target for a baseline of 280 m in a neutrino beam peaked at about 500 MeV. A sample of νe CC interactions in the off-axis near detector has been selected with a purity of 63% and an efficiency of 26%. The p-value for the null hypothesis is 0.085 and the excluded region at 95% CL is approximately sin 2 2θee > 0.3 for ∆m 2 eff > 7 eV 2 /c 4 .3 Introduction -In the last two decades, several experiments have observed neutrino oscillations compatible with the hypothesis of neutrino mixing in a three active flavours basis, described by the PMNS matrix [1]. Nevertheless, there exist experimental data that cannot be accommodated in this framework: the deficit of ν e originating from intense radioactive sources in the calibration of the solar neutrino gallium detectors SAGE [2,3] and GALLEX [4] and ν e rates near nuclear reactors [5]. Those experiments cover L/E values of order 1 m/ MeV, where L is the neutrino flight-path and E is the neutrino energy, too large to observe any sizeable effect for the standard neutrino mass differences. These anomalies can be interpreted as neutrino oscillations if the PMNS matrix is extended by introducing a new sterile neutrino ν s (3+1 model) with a mass of order 1 eV/c 2 [5,6]. The
We report measurements by the T2K experiment of the parameters θ 23 and Δm 2 32 governing the disappearance of muon neutrinos and antineutrinos in the three-flavor neutrino oscillation model. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, the parameters are measured separately for neutrinos and antineutrinos. −0.27 × 10 −3 eV 2 =c 4 for antineutrinos (assuming normal mass ordering). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.