Electrophilic neurite outgrowth-promoting prostaglandin (NEPP) compounds protect neurons from oxidative insults. At least part of the neuroprotective action of NEPPs lies in induction of hemeoxygenase-1 (HO-1), which, along with other phase II enzymes, serve as a defense system against oxidative stress. Here, we found that, by using fluorescent tags and immunoprecipitation assays, NEPPs are taken up preferentially into neurons and bind in a thiol-dependent manner to Keap1, a negative regulator of the transcription factor Nrf2. By binding to Keap1, NEPPs prevent Keap1-mediated inactivation of Nrf2 and, thus, enhance Nrf2 translocation into the nucleus of cultured neuronal cells. In turn, Nrf2 binds to antioxidant͞ electrophile-responsive elements of the HO-1 promoter to induce HO-1 expression. Consistent with this notion, NEPP induction of an HO-1 reporter construct is prevented if the antioxidant-responsive elements are mutated. We show that NEPPs are neuroprotective both in vitro from glutamate-related excitotoxicity and in vivo in a model of cerebral ischemia͞reperfusion injury (stroke). Our results suggest that NEPPs prevent excitotoxicity by activating the Keap1͞ Nrf2͞HO-1 pathway. Because NEPPs accumulate preferentially in neurons, they may provide a category of neuroprotective compounds, distinct from other electrophilic compounds such as tertbutylhydroquinone, which activates the antioxidant-responsive element in astrocytes. NEPPs thus represent a therapeutic approach for stroke and neurodegenerative disorders.hemeoxygenase-1 ͉ middle cerebral artery occlusion ͉ neurite outgrowth-promoting prostaglandin ͉ stroke ͉ neurodegenerative diseases
Prostaglandins (PGs) such as Δ12-PGJ2 and Δ7-PGA1 methyl ester that possess a cross-conjugated dienone unit exhibit unique antitumor and antiviral activities independent of intracellular cAMP levels. These compounds are transported reversibly into cultured cells and accumulate in nuclei via covalent interaction, eliciting growth inhibition. PGA1 methyl ester, a simple cyclopentenone analog, is less potent. The unique cellular behavior of the dienone PGs correlates well with their chemical properties. The PGs react specifically with thiol nucleophiles such as glutathione. Michael addition of thiols to Δ7-PGA1 methyl ester, an alkylidenecyclopentenone derivative, occurs facilely at the endocyclic C(11) position rather than at the C(7) position. This process is reversible, and in solution phase, the adducts are in equilibrium with considerable amounts of free PG and thiols. However, the reaction of this PG with Sepharose-bound thiols, regarded to be plausible mimics of protein thiols, is irreversible, and the resulting adducts are dissociated only by alkali treatment. On the other hand, PGA1 methyl ester reacts with soluble or polymer-anchored thiols at lower rates than Δ7-PGAl methyl ester, but the resulting thiol adducts are substantially more stable than those of the dienone PGs. This tendency of the PGA1 methyl ester causes its equilibrium to shift to the adduct formation. The reversibility of the Michael reaction of PGs with thiols is consistent with their intracellular behavior and biological activities. Since glutathione adducts of PGs have no antiproliferative activities for cancer cells, the intracellular free PGs are presumed to interact with target molecules to cause cell growth inhibition. The involvement of the ATP-dependent glutathione S-conjugate export pump (GS-X pump) in the efflux of PGs is discussed. Thus, the marked difference in potency of the dienone and enone PGs is explained by considering the combined kinetic and thermodynamic properties and the action of the GS-X pump.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.